Skip to main content
From left, Clarice Phelps, Jimmie Selph and Rich Franco are ORNL personnel who teach classes in the Chemical Radiation Technology Pathway program at Pellissippi State Community College.

Students from the first class of ORNL and Pellissippi State Community College's joint Chemical Radiation Technology Pathway toured isotope facilities at ORNL.

ORNL researcher Louise Evans is working to ensure safeguards approaches and verification technologies are integrated early in the design process of advanced reactor technologies. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers tackling national security challenges at ORNL are upholding an 80-year legacy of leadership in all things nuclear. Today, they’re developing the next generation of technologies that will help reduce global nuclear risk and enable safe, secure, peaceful use of nuclear materials, worldwide.

A team led by Oak Ridge National Laboratory researchers used Frontier to explore training strategies for one of the largest artificial intelligence models to date. Credit: Getty Images

A team led by researchers at ORNL explored training strategies for one of the largest artificial intelligence models to date with help from the world’s fastest supercomputer. The findings could help guide training for a new generation of AI models for scientific research.
 

Frontier supercomputer sets new standard in molecular simulation

When scientists pushed the world’s fastest supercomputer to its limits, they found those limits stretched beyond even their biggest expectations. In the latest milestone, a team of engineers and scientists used Frontier to simulate a system of nearly half a trillion atoms — the largest system ever modeled and more than 400 times the size of the closest competition.

From left, J.D. Rice, Trevor Michelson and Chris Seck look at a monitor in Seck’s lab. The three are wearing safety glasses to protect against the laser beams used by the scanning vibrometer, which is helping Seck quantify vibration of an appliance in his lab. Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL scientists are working on a project to engineer and develop a cryogenic ion trap apparatus to simulate quantum spin liquids, a key research area in materials science and neutron scattering studies.

ORNL researcher Felicia Gilliland loads experiment samples into position for the newly installed UR5E robotic arm at the BIO-SANS instrument. The industrial-grade robot changes samples automatically, reducing the need for human assistance and improving sample throughput. Credit: Jeremy Rumsey/ORNL, U.S. Dept. of Energy

The BIO-SANS instrument, located at Oak Ridge National Laboratory’s High Flux Isotope Reactor, is the latest neutron scattering instrument to be retrofitted with state-of-the-art robotics and custom software. The sophisticated upgrade quadruples the number of samples the instrument can measure automatically and significantly reduces the need for human assistance.

A newly completed tunnel section will provide the turning and connecting point for the Spallation Neutron Source particle accelerator and the planned Second Target Station. Credit: ORNL, U.S. Dept. of Energy

The new section of tunnel will provide the turning and connecting point for the accelerator beamline between the existing particle accelerator at ORNL’s Spallation Neutron Source and the planned Second Target Station, or STS. When complete, the PPU project will increase accelerator power up to 2.8 megawatts from its current record-breaking 1.7 megawatts of beam power.

New research predicts peak groundwater extraction for key basins around the globe by the year 2050. The map indicates groundwater storage trends for Earth’s 37 largest aquifers using data from the NASA Jet Propulsion Laboratory GRACE satellite. Credit: NASA.

Groundwater withdrawals are expected to peak in about one-third of the world’s basins by 2050, potentially triggering significant trade and agriculture shifts, a new analysis finds. 

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries. Credit: Phoenix Pleasant/ORNL

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries.

ORNL’s Suhas Sreehari explains the algebraic and topological foundations of representation systems, used in generative AI technology such as large language models. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

In the age of easy access to generative AI software, user can take steps to stay safe. Suhas Sreehari, an applied mathematician, identifies misconceptions of generative AI that could lead to unintentionally bad outcomes for a user.