Skip to main content
ORNL researchers are establishing a digital thread of data, algorithms and workflows to produce a continuously updated model of earth systems.

Digital twins are exactly what they sound like: virtual models of physical reality that continuously update to reflect changes in the real world.

 

2023 Battelle Distinguished Inventors

Four scientists affiliated with ORNL were named Battelle Distinguished Inventors during the lab’s annual Innovation Awards on Dec. 1 in recognition of being granted 14 or more United States patents.

ORNL Composites Innovation staff members David Nuttall, left, and Vipin Kumar use additive manufacturing compression molding to produce a composite-based finished part in minutes. AMCM technology could accelerate decarbonization of the automobile and aerospace industries. Credit: ORNL, U.S. Dept. of Energy

Researchers at ORNL are extending the boundaries of composite-based materials used in additive manufacturing, or AM. ORNL is working with industrial partners who are exploring AM, also known as 3D printing, as a path to higher production levels and fewer supply chain interruptions.

The sun sets behind the ORNL Visitor Center in this aerial photo from April 2023. Credit: Kase Clapp/ORNL, U.S. Dept. of Energy

In fiscal year 2023 — Oct. 1–Sept. 30, 2023 — Oak Ridge National Laboratory was awarded more than $8 million in technology maturation funding through the Department of Energy’s Technology Commercialization Fund, or TCF.

Photo collage with text that reads " A New era of discovery"

ORNL, a bastion of nuclear physics research for the past 80 years, is poised to strengthen its programs and service to the United States over the next decade if national recommendations of the Nuclear Science Advisory Committee, or NSAC, are enacted.

The Department of Energy’s Oak Ridge National Laboratory announced the establishment of its Center for AI Security Research, or CAISER, to address threats already present as governments and industries around the world adopt artificial intelligence and take advantage of the benefits it promises in data processing, operational efficiencies and decision-making. Credit: Rachel Green/ORNL, U.S. Dept. of Energy

The Department of Energy’s Oak Ridge National Laboratory announced the establishment of the Center for AI Security Research, or CAISER, to address threats already present as governments and industries around the world adopt artificial intelligence and take advantage of the benefits it promises in data processing, operational efficiencies and decision-making.

Conceptual art depicts an atomic nucleus and merging neutron stars, respectively, areas of study in ORNL-led projects called NUCLEI and ENAF within the Scientific Discovery through Advanced Computing, or SciDAC, program. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

ORNL is leading two nuclear physics research projects within the Scientific Discovery through Advanced Computing, or SciDAC, program from the Department of Energy Office of Science.

ZEISS Head of Additive Manufacturing Technology Claus Hermannstaedter, left, and ORNL Interim Associate Laboratory Director for Energy Science and Technology Rick Raines sign a licensing agreement that allows ORNL’s machine-learning algorithm, Simurgh, to be used for rapid evaluations of 3D-printed components with industrial X-ray computed tomography, or CT. Using machine learning in CT scanning is expected to reduce the time and cost of inspections of 3D-printed parts by more than ten times.

A licensing agreement between the Department of Energy’s Oak Ridge National Laboratory and research partner ZEISS will enable industrial X-ray computed tomography, or CT, to perform rapid evaluations of 3D-printed components using ORNL’s machine

A beam of excited sodium-32 nuclei implants in the FRIB Decay Station initiator is used to detect decay signatures of isotopes. Credit: Gary Hollenhead, Toby King and Adam Malin/ORNL, U.S. Dept. of Energy

Timothy Gray of ORNL led a study that may have revealed an unexpected change in the shape of an atomic nucleus. The surprise finding could affect our understanding of what holds nuclei together, how protons and neutrons interact and how elements form.

Cody Lloyd stands in front of images of historical nuclear field testing. The green and red dots are the machine learning algorithm recognizing features in the image. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Cody Lloyd became a nuclear engineer because of his interest in the Manhattan Project, the United States’ mission to advance nuclear science to end World War II. As a research associate in nuclear forensics at ORNL, Lloyd now teaches computers to interpret data from imagery of nuclear weapons tests from the 1950s and early 1960s, bringing his childhood fascination into his career