Skip to main content
Seeing the difference Ac-225 could make to cancer patients made Raina Setzer want to come to ORNL to directly work with the isotope. Credit: Allison Peacock/ORNL, U.S. Dept. of Energy

Raina Setzer knows the work she does matters. That’s because she’s already seen it from the other side. Setzer, a radiochemical processing technician in Oak Ridge National Laboratory’s Isotope Processing and Manufacturing Division, joined the lab in June 2023.

Researchers at Oak Ridge National Laboratory probed the chemistry of radium to gain key insights on advancing cancer treatments using radiation therapy. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL explored radium’s chemistry to advance cancer treatments using ionizing radiation.

Earth Day

Tackling the climate crisis and achieving an equitable clean energy future are among the biggest challenges of our time. 

Mars Rover 2020

More than 50 current employees and recent retirees from ORNL received Department of Energy Secretary’s Honor Awards from Secretary Jennifer Granholm in January as part of project teams spanning the national laboratory system. The annual awards recognized 21 teams and three individuals for service and contributions to DOE’s mission and to the benefit of the nation.

Summer Widner, Stephanie Timbs, James Gaugler and James Avenell of ORNL are part of a team that processes thorium-228, a byproduct of actinium-227. As new uses for thorium are realized, particularly in medicine, the lab expects the demand for the radioisotope to grow.

As a medical isotope, thorium-228 has a lot of potential — and Oak Ridge National Laboratory produces a lot.

An ORNL research team is investigating new catalysts for ethanol conversion that could advance the cost-effective production of renewable transportation. Credit: Unsplash

Oak Ridge National Laboratory researchers have developed a new catalyst for converting ethanol into C3+ olefins – the chemical

Targeted alpha therapy can deliver radiation to specific cells, with minimal effect on surrounding, healthy cells. Credit: Michelle Lehman and Jaimee Janiga/ORNL, U.S. Dept. of Energy

A rare isotope in high demand for treating cancer is now more available to pharmaceutical companies developing and testing new drugs.

self-healing elastomers
Researchers at Oak Ridge National Laboratory developed self-healing elastomers that demonstrated unprecedented adhesion strength and the ability to adhere to many surfaces, which could broaden their potential use
ORNL researchers have developed a new class of cobalt-free cathodes called NFA that are being investigated for making lithium-ion batteries for electric vehicles. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a new family of cathodes with the potential to replace the costly cobalt-based cathodes typically found in today’s lithium-ion batteries that power electric vehicles and consumer electronics.

Sandra Davern performs cell based assays to evaluate cell death and DNA damage in response to radiation in order to gain a better understanding of how radioisotope nanoparticles affect the human body.

When Sandra Davern looks to the future, she sees individualized isotopes sent into the body with a specific target: cancer cells.