Skip to main content
The EPA approved the registration and use of a renewable gasoline blendstock developed by Vertimass LLC and Oak Ridge National Laboratory that can significantly reduce vehicle emissions when added to conventional fuels. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

The U.S. Environmental Protection Agency has approved the registration and use of a renewable gasoline blendstock developed by Vertimass LLC and ORNL that can significantly reduce the emissions profile of vehicles when added to conventional fuels. 

The transportation and industrial sectors together account for more than 50% of the country’s carbon footprint. Defossilization could help reduce new emissions from these and other difficult-to-electrify segments of the U.S. economy.

Scientists at Oak Ridge National Laboratory and six other Department of Energy national laboratories have developed a United States-based perspective for achieving net-zero carbon emissions. 

Architects of the Adaptable IO System, seen here with Frontier's Orion file system: Scott Klasky, left, heads the ADIOS project and leads ORNL's Workflow Systems group, and Norbert Podhorszki, an ORNL computer scientist, oversees ADIOS's continuing development. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Integral to the functionality of ORNL's Frontier supercomputer is its ability to store the vast amounts of data it produces onto its file system, Orion. But even more important to the computational scientists running simulations on Frontier is their capability to quickly write and read to Orion along with effectively analyzing all that data. And that’s where ADIOS comes in.

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. 

ORNL’s Tomás Rush examines a culture as part of his research into the plant-fungus relationship that can help or hinder ecosystem health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

New computational framework speeds discovery of fungal metabolites, key to plant health and used in drug therapies and for other uses. 
 

Prasanna Balaprakash, who leads ORNL’s AI Initiative, participated in events hosted by the White House Office of Science and Technology Policy and the Task Force on American Innovation to discuss the challenges and opportunities posed by AI. Credit: Brian Mosley/Computing Research Association

In summer 2023, ORNL's Prasanna Balaprakash was invited to speak at a roundtable discussion focused on the importance of academic artificial intelligence research and development hosted by the White House Office of Science and Technology Policy and the U.S. National Science Foundation.

2023 Top Science Achievements at SNS & HFIR

The 2023 top science achievements from HFIR and SNS feature a broad range of materials research published in high impact journals such as Nature and Advanced Materials.

ORNL researchers contributed biomass resources analysis to a new report that says carbon dioxide removal targets can be reached by 2050 using existing technology. Source: Jason Richards/ORNL, U.S. Dept. of Energy

Scientists from more than a dozen institutions have completed a first-of-its-kind high-resolution assessment of carbon dioxide removal potential in the United States, charting a path to achieve a net-zero greenhouse gas economy by 2050.

Frontier’s exascale power enables the Simple Cloud-Resolving E3SM Atmosphere Model to run years’ worth of climate simulations at unprecedented speed and scale. Credit: Ben Hillman/Sandia National Laboratories, U.S. Dept. of Energy

A 19-member team of scientists from across the national laboratory complex won the Association for Computing Machinery’s 2023 Gordon Bell Special Prize for Climate Modeling for developing a model that uses the world’s first exascale supercomputer to simulate decades’ worth of cloud formations.

A Univ. of Michigan-led team used Frontier, the world’s first exascale supercomputer, to simulate a system of nearly 75,000 magnesium atoms at near-quantum accuracy. Credit: SC23

 

A team of eight scientists won the Association for Computing Machinery’s 2023 Gordon Bell Prize for their study that used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.