Skip to main content
Surprisingly, changing isotope masses of molybdenum in a single layer of semiconductor molybdenum disulfide was found to shift the color of light emitted when the layer was illuminated. The study revealed the potential of isotope engineering to design new technologies in 2D materials. Credit: Chris Rouleau/ORNL, U.S. Dept. of Energy

Research led by scientists at ORNL has demonstrated that small changes in the isotopic content of thin semiconductor materials can influence their optical and electronic properties, possibly opening the way to new and advanced designs with the semiconductors. 

Testing with ORNL tribology equipment found that new ionic liquid-based lubricant additives developed for water turbines significantly reduced friction and equipment wear. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

Scientists at the Department of Energy’s Oak Ridge National Laboratory have developed lubricant additives that protect both water turbine equipment and the surrounding environment.

New research predicts peak groundwater extraction for key basins around the globe by the year 2050. The map indicates groundwater storage trends for Earth’s 37 largest aquifers using data from the NASA Jet Propulsion Laboratory GRACE satellite. Credit: NASA.

Groundwater withdrawals are expected to peak in about one-third of the world’s basins by 2050, potentially triggering significant trade and agriculture shifts, a new analysis finds. 

The center, officially named the Southeast Region Cybersecurity Collaboration Center (SERC3), will bring together experts from the private sector, academia and government to share information and generate innovative real-world solutions to protect the nation’s power grid and other key sectors.

Auburn University’s McCrary Institute for Cyber and Critical Infrastructure Security was awarded a $10 million DOE grant in partnership with ORNL to create a pilot regional cybersecurity research and operations center to protect the electric power grid against cyber attacks.

The ORNL-developed inspection system uses an angled window to minimize light reflections while capturing images inside waveguides that are designed to channel microwaves at the ITER fusion project.

Inspection technology developed by Oak Ridge National Laboratory will help deliver plasma heating to the ITER international fusion facility.

Direct Lithium Extraction

Chemists at ORNL have invented a more efficient way to extract lithium from waste liquids leached from mining sites, oil fields and used batteries. They demonstrated that a common mineral can adsorb at least five times more lithium than can be collected using previously developed adsorbent materials. 

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries. Credit: Phoenix Pleasant/ORNL

An international team using neutrons set the first benchmark (one nanosecond) for a polymer-electrolyte and lithium-salt mixture. Findings could produce safer, more powerful lithium batteries.

David Sholl

David Sholl has been named the executive director of the University of Tennessee-Oak Ridge Innovation Institute (UT-ORII) and vice provost of University of Tennessee, Knoxville, after serving as the institute’s interim leader since June 2023. 

DOE national laboratory scientists led by Oak Ridge National Laboratory have developed the first tree dataset of its kind, bridging molecular information about the poplar tree microbiome to ecosystem-level processes. Credit: Andy Sproles, ORNL/U.S. Dept. of Energy

A first-ever dataset bridging molecular information about the poplar tree microbiome to ecosystem-level processes has been released by a team of DOE scientists led by ORNL. The project aims to inform research regarding how natural systems function, their vulnerability to a changing climate and ultimately how plants might be engineered for better performance as sources of bioenergy and natural carbon storage.

ORNL researchers are developing algorithms and multilayered communication and control systems that make electric vehicle chargers operate more reliably, even if there is a voltage drop or disturbance in the electric grid. Credit: Andy Sproles/ORNL, US Dept. of Energy

ORNL researchers are working to make EV charging more resilient by developing algorithms to deal with both internal and external triggers of charger failure. This will help charging stations remain available to traveling EV drivers, reducing range anxiety.