Skip to main content
Members of the Analytics and AI Methods at Scale group in the National Center for Computational Sciences at ORNL developed the mixed-precision performance benchmarking tool OpenMxP. From left are group leader Feiyi Wang, technical lead Mike Matheson and research scientist Hao Lu. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

As Frontier, the world’s first exascale supercomputer, was being assembled at the Oak Ridge Leadership Computing Facility in 2021, understanding its performance on mixed-precision calculations remained a difficult prospect.

Conceptual art depicts an atomic nucleus and merging neutron stars, respectively, areas of study in ORNL-led projects called NUCLEI and ENAF within the Scientific Discovery through Advanced Computing, or SciDAC, program. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

ORNL is leading two nuclear physics research projects within the Scientific Discovery through Advanced Computing, or SciDAC, program from the Department of Energy Office of Science.

Scientists conducted microbial DNA sampling at a Yellowstone National Park hot spring for a study sponsored by DOE’s Biological and Environmental Research program, the National Science Foundation and NASA. Credit: Mircea Podar/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists studied hot springs on different continents and found similarities in how some microbes adapted despite their geographic diversity.

A rendering of the CFM RISE program’s open fan architecture. (bottom) A GE visualization of turbulent flow in the tip region of an open fan blade using the Frontier supercomputer at ORNL. Credit: CFM, GE Research (CFM is a 50­–50 joint company between GE and Safran Aircraft Engines)

Outside the high-performance computing, or HPC, community, exascale may seem more like fodder for science fiction than a powerful tool for scientific research. Yet, when seen through the lens of real-world applications, exascale computing goes from ethereal concept to tangible reality with exceptional benefits.

Michelle Kidder is the recipient of the 2023 American Chemical Society’s Mid-Career Award. Credit: ORNL, U.S. Dept. of Energy

Michelle Kidder, a senior R&D staff scientist at ORNL, has received the American Chemical Society’s Energy and Fuels Division’s Mid-Career Award for sustained and distinguished contributions to the field of energy and fuel chemistry.

oxygen isotope 28

Rare isotope oxygen-28 has been determined to be "barely unbound" by experiments led by researchers at the Tokyo Institute of Technology and by computer simulations conducted at ORNL. The findings from this first-ever observation of 28O answer a longstanding question in nuclear physics: can you get bound isotopes in a very neutron-rich region of the nuclear chart, where instability and radioactivity are the norm? 

Madhavi Martin portrait image

Madhavi Martin brings a physicist’s tools and perspective to biological and environmental research at the Department of Energy’s Oak Ridge National Laboratory, supporting advances in bioenergy, soil carbon storage and environmental monitoring, and even helping solve a murder mystery.

The OpeN-AM experimental platform, installed at the VULCAN instrument, features a robotic arm that prints layers of molten metal to create complex shapes. Credit: Jill Hemman/ORNL, U.S Dept. of Energy

Technologies developed by researchers at ORNL have received six 2023 R&D 100 Awards.  

A beam of excited sodium-32 nuclei implants in the FRIB Decay Station initiator is used to detect decay signatures of isotopes. Credit: Gary Hollenhead, Toby King and Adam Malin/ORNL, U.S. Dept. of Energy

Timothy Gray of ORNL led a study that may have revealed an unexpected change in the shape of an atomic nucleus. The surprise finding could affect our understanding of what holds nuclei together, how protons and neutrons interact and how elements form.

ORNL-developed software tools for identifying and quantifying energy efficiency will be demonstrated to participants during an Energy Bootcamp sponsored by DOE’s Industrial Efficiency and Decarbonization Office. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers have developed a training camp to help manufacturing industries reduce energy-related carbon dioxide emissions and improve cost savings.