Skip to main content
An electromagnetic pulse, or EMP, can be triggered by a nuclear explosion in the atmosphere or by an electromagnetic generator in a vehicle or aircraft. Here’s the chain of reactions it could cause to harm electrical equipment on the ground. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL have been leading a project to understand how a high-altitude electromagnetic pulse, or EMP, could threaten power plants.

Steven Campbell’s technical expertise supports integration of power electronics innovations from ORNL labs to the electrical grid. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Steven Campbell can often be found deep among tall cases of power electronics, hunkered in his oversized blue lab coat, with 1500 volts of electricity flowing above his head. When interrupted in his laboratory at ORNL, Campbell will usually smile and duck his head.

When exposed to radiation, electrons produced within molten zinc chloride, or ZnCl2, can be observed in three distinct singly occupied molecular orbital states, plus a more diffuse, delocalized state. Credit: Hung H. Nguyen/University of Iowa

In a finding that helps elucidate how molten salts in advanced nuclear reactors might behave, scientists have shown how electrons interacting with the ions of the molten salt can form three states with different properties. Understanding these states can help predict the impact of radiation on the performance of salt-fueled reactors.

ORNL’s David Sholl is director of the new DOE Energy Earthshot Non-Equilibrium Energy Transfer for Efficient Reactions center to help decarbonize the industrial chemical industry. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

ORNL has been selected to lead an Energy Earthshot Research Center, or EERC, focused on developing chemical processes that use sustainable methods instead of burning fossil fuels to radically reduce industrial greenhouse gas emissions to stem climate change and limit the crisis of a rapidly warming planet.
 

Oak Ridge National Laboratory entrance sign

The Department of Energy’s Office of Science has selected three ORNL research teams to receive funding through DOE’s new Biopreparedness Research Virtual Environment initiative.

A new nanoscience study led by an ORNL quantum researcher takes a big-picture look at how scientists study materials at the smallest scales. Credit: Getty Images

A new nanoscience study led by a researcher at ORNL takes a big-picture look at how scientists study materials at the smallest scales.

Jonathan Harter, a technical professional in ORNL’s Engineering Science and Technology Directorate, uses a robot and other automated methods to disassemble electric vehicle batteries for recycling or reuse in the electric grid. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

After being stabilized in an ambulance as he struggled to breathe, Jonathan Harter hit a low point. It was 2020, he was very sick with COVID-19, and his job as a lab technician at ORNL was ending along with his research funding.

Innovation Crossroads cohort 7

Seven entrepreneurs will embark on a two-year fellowship as the seventh cohort of Innovation Crossroads kicks off this month at ORNL. Representing a range of transformative energy technologies, Cohort 7 is a diverse class of innovators with promising new companies.

ORNL seismic researcher Chengping Chai placed seismic sensors on the ground at various distances from an ORNL nuclear reactor to learn whether they could detect its operating state. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Like most scientists, Chengping Chai is not content with the surface of things: He wants to probe beyond to learn what’s really going on. But in his case, he is literally building a map of the world beneath, using seismic and acoustic data that reveal when and where the earth moves.

Mickey Wade, associate laboratory director for the Fusion and Fission Energy and Science Directorate, addresses attendees of an event to celebrate the licensing of an augmented reality technology to Teletrix. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A method using augmented reality to create accurate visual representations of ionizing radiation, developed at ORNL, has been licensed by Teletrix, a firm that creates advanced simulation tools to train the nation’s radiation control workforce.