Skip to main content

News

ORNL’s Tomás Rush explores the secret lives of fungi and plants for insights into the interactions that determine plant health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Tomás Rush began studying the mysteries of fungi in fifth grade and spent his college intern days tromping through forests, swamps and agricultural lands searching for signs of fungal plant pathogens causing disease on host plants.

Researchers at Oak Ridge National Laboratory probed the chemistry of radium to gain key insights on advancing cancer treatments using radiation therapy. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL explored radium’s chemistry to advance cancer treatments using ionizing radiation.

Yun-Yi Pai works with a closed-cycle dilution refrigerator designed for cryomagnetooptical microscopy at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Five National Quantum Information Science Research Centers are leveraging the behavior of nature at the smallest scales to develop technologies for science’s most complex problems.

ORNL’s RapidCure improves lithium-ion electrode production by producing electrodes faster, reducing the energy necessary for manufacturing and eliminating the need for a solvent recycling unit. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2022 R&D 100 Awards, plus special recognition for a battery-related green technology product.

Travis Humble. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Travis Humble has been named director of the Quantum Science Center headquartered at ORNL. The QSC is a multi-institutional partnership that spans industry, academia and government institutions and is tasked with uncovering the full potential of quantum materials, sensors and algorithms.

The AI-driven HyperCT platform has three primary points of articulation that can rotate a sample in almost any direction, eliminating the need for human intervention and significantly reducing lengthy experiment times. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers are developing a first-of-its-kind artificial intelligence device for neutron scattering called Hyperspectral Computed Tomography, or HyperCT.

Data from different sources are joined on platforms created by ORNL researchers to offer better information for decision makers. Credit: ORNL/Nathan Armistead

When the COVID-19 pandemic stunned the world in 2020, researchers at ORNL wondered how they could extend their support and help

Magnetic quantum material broadens platform for probing next-gen information technologies

Scientists at ORNL used neutron scattering to determine whether a specific material’s atomic structure could host a novel state of matter called a spiral spin liquid.

Oak Ridge National Laboratory’s Leah Broussard shows a neutron-absorbing "wall" that stops all neutrons but in theory would allow hypothetical mirror neutrons to pass through. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

To solve a long-standing puzzle about how long a neutron can “live” outside an atomic nucleus, physicists entertained a wild but testable theory positing the existence of a right-handed version of our left-handed universe.

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions. Credit: Getty Images

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions.