Skip to main content
Researchers from ORNL and Argonne National Laboratory will work with Wabtec, a leading manufacturer of freight locomotives, to develop the hardware and control strategies for a single cylinder, dual-fuel engine to demonstrate the viability of using alternative fuels for locomotives. The team’s goal is to reduce carbon emissions from the roughly 25,000 locomotives already in use in North America. Credit: ORNL, U.S. Dept. of Energy

As the United States shifts away from fossil-fuel-burning cars and trucks, scientists at the Department of Energy’s Oak Ridge and Argonne national laboratories are exploring options for another form of transportation: trains. The research focuses on zero-carbon hydrogen and other low-carbon fuels as viable alternatives to diesel for the rail industry.

From left, Michael Starke, Steven Campbell and Madhu Chinthavali of ORNL discuss the configuration of the power electronics hub demonstrated with hardware in the low-voltage lab at GRID-C. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL recently demonstrated a new technology to better control how power flows to and from commercial buildings equipped with solar, wind or other renewable energy generation.

ORNL’s Valentino Cooper will direct a new DOE Energy Frontier Research Center focused on polymer electrolytes for solid-state batteries. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL has been selected to lead an Energy Frontier Research Center, or EFRC, focused on polymer electrolytes for next-generation energy storage devices such as fuel cells and solid-state electric vehicle batteries.

Innovation Crossroads Cohort Six includes: Bianca Bailey, Agriwater; Rajan Kumar, Ateois Systems; Alex Stiles, Vitriform3D; Kim Tutin, Captis Aire; Anca Timofte, Holocene Climate; and Pete Willette, facil.ai. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory’s Innovation Crossroads program welcomes six new science and technology innovators from across the United States to the sixth cohort. 

ORNL polymer scientists Tomonori Saito, left, and Sungjin Kim upcycled waste plastic to create a stronger, tougher, solvent-resistant material for new additive manufacturing applications. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL researchers have developed an upcycling approach that adds value to discarded plastics for reuse in additive manufacturing, or 3D printing.

Frontier has arrived, and ORNL is preparing for science on Day One. Credit: Carlos Jones/ORNL, Dept. of Energy

The Frontier supercomputer at the Department of Energy’s Oak Ridge National Laboratory earned the top ranking today as the world’s fastest on the 59th TOP500 list, with 1.1 exaflops of performance. The system is the first to achieve an unprecedented level of computing performance known as exascale, a threshold of a quintillion calculations per second.

High voltage power lines carry electricity generated by the Tennessee Valley Authority to ORNL. Credit: Dobie Gillispie/ORNL, U.S. Dept. of Energy

ORNL and the Tennessee Valley Authority, or TVA, are joining forces to advance decarbonization technologies from discovery through deployment through a new memorandum of understanding, or MOU.

Scientists from LanzaTech, Northwestern University and Oak Ridge National Laboratory engineered a microbe, shown in light blue, to convert molecules of industrial waste gases, such as carbon dioxide and carbon monoxide, into acetone. The same microbe can also make isopropanol. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

A team of scientists from LanzaTech, Northwestern University and ORNL have developed carbon capture technology that harnesses emissions from industrial processes to produce acetone and isopropanol

Researchers at Oak Ridge National Laboratory upcycled a common plastic to develop a novel reusable adhesive with exceptional strength and toughness.Carlos Jones/ORNL; U.S. Dept. of Energy

Researchers at ORNL used polymer chemistry to transform a common household plastic into a reusable adhesive with a rare combination of strength and ductility, making it one of the toughest materials ever reported.