Skip to main content
An open-source code developed by an ORNL-led team could provide new insights into the everyday operation of the nation’s power grid. Credit: Pixabay

Oak Ridge National Laboratory, University of Tennessee and University of Central Florida researchers released a new high-performance computing code designed to more efficiently examine power systems and identify electrical grid disruptions, such as

ORNL researchers produced self-healable and highly adhesive elastomers, proving they self-repair in ambient conditions and underwater. This project garnered a 2021 R&D 100 Award. Credit: ORNL, U.S. Dept. of Energy

Research teams from the Department of Energy’s Oak Ridge National Laboratory and their technologies have received seven 2021 R&D 100 Awards, plus special recognition for a COVID-19-related project.

ORNL researchers developed a novel process for manufacturing extreme heat resistant carbon-carbon composites at a faster rate and produced fins or strakes made of the materials for testing on a U.S. Navy rocket launching with NASA. Credit: ORNL, Sandia/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have developed a novel process to manufacture extreme heat resistant carbon-carbon composites. The performance of these materials will be tested in a U.S. Navy rocket that NASA will launch this fall.

The first central solenoid module arrived at the ITER site in St. Paul-lez-Durance, France on Sept. 9. Credit: ITER Organization

Staff at Oak Ridge National Laboratory organized transport for a powerful component that is critical to the world’s largest experiment, the international ITER project.

The ectomycorrhizal fungus Laccaria bicolor, shown in green, envelops the roots of a transgenic switchgrass plant. Switchgrass is not known to interact with this type of fungi naturally; the added PtLecRLK1 gene tells the plant to engage the fungus. Credit: ORNL, U.S. Dept. of Energy

An ORNL team has successfully introduced a poplar gene into switchgrass, an important biofuel source, that allows switchgrass to interact with a beneficial fungus, ultimately boosting the grass’ growth and viability in changing environments.

Compression (red arrows) alters crystal symmetry (green arrows), which changes band dispersion (left and right), leading to highly mobile electrons. Credit: Jaimee Janiga, Andrew Sproles, Satoshi Okamoto/ORNL, U.S. Dept. of Energy

A team led by the ORNL has found a rare quantum material in which electrons move in coordinated ways, essentially “dancing.”

ORNL researchers are examining ways to increase the amount of carbon sequestered in soils by crops such as switchgrass. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Nearly a billion acres of land in the United States is dedicated to agriculture, producing more than a trillion dollars of food products to feed the country and the world. Those same agricultural processes, however, also produced an estimated 700 million metric tons of carbon dioxide equivalent in 2018, according to the U.S. Department of Agriculture.

The 3D printed concrete smart wall installed at ORNL over the summer was monitored for energy efficiency, with preliminary results showing a minimum of 8% cost savings. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated that cooling cost savings could be achieved with a 3D printed concrete smart wall following a three-month field test.

ORNL has licensed its high-powered wireless vehicle charging technology to HEVO, including the Oak Ridge Converter, which reduces the size and increases the efficiency of grid-to-vehicle power transfer infrastructure. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

ORNL has licensed its wireless charging technology for electric vehicles to Brooklyn-based HEVO. The system provides the world’s highest power levels in the smallest package and could one day enable electric vehicles to be charged as they are driven at highway speeds.

Automated disassembly line aims to make battery recycling safer, faster

Researchers at ORNL have developed a robotic disassembly system for spent electric vehicle battery packs to safely and efficiently recycle and reuse critical materials while reducing toxic waste.