Skip to main content
ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries

L-R: ORNL’s Omer Onar and Veda Galigekere with the dynamic wireless charging test bed at ORNL’s Grid Research Integration and Deployment Center. Credit: Carlos Jones, ORNL/U.S. Dept. of Energy

Consumer buy-in is key to the future of a decarbonized transportation sector in which electric vehicles largely replace today’s conventionally fueled cars and trucks.

Deborah Frincke, one of the nation’s preeminent computer scientists and cybersecurity experts, serves as associate laboratory director of ORNL’s National Security Science Directorate. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Deborah Frincke, one of the nation’s preeminent computer scientists and cybersecurity experts, serves as associate laboratory director of ORNL’s National Security Science Directorate. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Brenda Smith, shown here working with a gas viscometer in her research lab, is one of several people concurrently researching the thermophysical properties of feedstock gas. Their research will support computational researchers who are designing processes to separate isotopes. Credit: Carlos Jones/ORNL, US Dept. of Energy

For years Brenda Smith found fulfillment working with nuclear batteries, a topic she’s been researching as a chemist at Oak Ridge National Laboratory.

ORNL, in collaboration with Cincinnati, Inc., used the Big Area Additive Manufacturing machine to 3D print a mold made of recycled thermoplastic composite and syntactic foam, demonstrating the potential for multimaterials in large-scale applications. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers, in collaboration with Cincinnati Inc., demonstrated the potential for using multimaterials and recycled composites in large-scale applications by 3D printing a mold that replicated a single facet of a

ORNL’s Sergei Kalinin and Rama Vasudevan (foreground) use scanning probe microscopy to study bulk ferroelectricity and surface electrochemistry -- and generate a lot of data. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

At the Department of Energy’s Oak Ridge National Laboratory, scientists use artificial intelligence, or AI, to accelerate the discovery and development of materials for energy and information technologies.

Jianlin Li, leader of the Energy Storage and Conversion Manufacturing Group, directs the development of advanced manufacturing schemes and pilot-scale devices into emerging energy storage and conversion research. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

In his career focused on energy storage science, Jianlin Li has learned that discovering new ways to process and assemble batteries is just as important as the development of new materials.

Heavy-duty vehicles contribute 23% of transportation emissions of greenhouse gases and account for almost one-quarter of the fuel consumed annually in the U.S. Credit: Chris Bair/Unsplash

Through a consortium of Department of Energy national laboratories, ORNL scientists are applying their expertise to provide solutions that enable the commercialization of emission-free hydrogen fuel cell technology for heavy-duty

Parans Paranthaman, a researcher in the Chemical Sciences Division at ORNL, coordinated research efforts to study the filter efficiency of the N95 material. His published results represent one of the first studies on polypropylene as it relates to COVID-19. Credit: ORNL/U.S. Dept. of Energy

When COVID-19 was declared a pandemic in March 2020, Oak Ridge National Laboratory’s Parans Paranthaman suddenly found himself working from home like millions of others.

The proposed Battery Identity Global Passport suggests a scannable QR code or other digital tag affixed to Li-ion batteries to identify materials for efficient end-of-life recycling. Credit: Andy Sproles, ORNL/U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have devised a method to identify the unique chemical makeup of every lithium-ion battery around the world, information that could accelerate recycling, recover critical materials and resolve a growing waste stream.