Skip to main content
Merlin Theodore, advanced fibers manufacturing group leader and Tuskegee University alumna, will guide Oak Ridge National Laboratory’s collaboration with the university, through which students and researchers work together to advance the development of bioderived materials. Credit: ORNL, U.S. Dept. of Energy

ORNL and Tuskegee University have formed a partnership to develop new biodegradable materials for use in buildings, transportation and biomedical applications.

As part of the Next-Generation Ecosystem Experiments Arctic project, scientists are gathering and incorporating new data about the Alaskan tundra into global models that predict the future of our planet. Credit: ORNL/U.S. Dept. of Energy

Improved data, models and analyses from ORNL scientists and many other researchers in the latest global climate assessment report provide new levels of certainty about what the future holds for the planet 

ORNL’s particle entanglement machine is a precursor to the device that researchers at the University of Oklahoma are building, which will produce entangled quantum particles for quantum sensing to detect underground pipeline leaks. Credit: ORNL, U.S. Dept. of Energy

To minimize potential damage from underground oil and gas leaks, Oak Ridge National Laboratory is co-developing a quantum sensing system to detect pipeline leaks more quickly.

ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries

Spin chains in a quantum system undergo a collective twisting motion as the result of quasiparticles clustering together. Demonstrating this KPZ dynamics concept are pairs of neighboring spins, shown in red, pointing upward in contrast to their peers, in blue, which alternate directions. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Using complementary computing calculations and neutron scattering techniques, researchers from the Department of Energy’s Oak Ridge and Lawrence Berkeley national laboratories and the University of California, Berkeley, discovered the existence of an elusive type of spin dynamics in a quantum mechanical system.

Urban climate modeling

Researchers at Oak Ridge National Laboratory have identified a statistical relationship between the growth of cities and the spread of paved surfaces like roads and sidewalks. These impervious surfaces impede the flow of water into the ground, affecting the water cycle and, by extension, the climate.

A 3D printed turbine blade demonstrates the use of the new class of nickel-based superalloys that can withstand extreme heat environments without cracking or losing strength. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have demonstrated that a new class of superalloys made of cobalt and nickel remains crack-free and defect-resistant in extreme heat, making them conducive for use in metal-based 3D printing applications.

Merlin Theodore holding N95 mask filtration material produced at DOE's Carbon Fiber Technology Facility

Three technologies developed by ORNL researchers have won National Technology Transfer Awards from the Federal Laboratory Consortium. One of the awards went to a team that adapted melt-blowing capabilities at DOE’s Carbon Fiber Technology Facility to enable the production of filter material for N95 masks in the fight against COVID-19.

In situ monitoring to evaluate nickel-based superalloys as they are printing gave Mike Kirka, an ORNL materials scientist, the ability to see potential weaknesses that could lead to part failure. Credit: ORNL/U.S. Dept. of Energy

Growing up in the heart of the American automobile industry near Detroit, Oak Ridge National Laboratory materials scientist Mike Kirka was no stranger to manufacturing.

self-healing elastomers
Researchers at Oak Ridge National Laboratory developed self-healing elastomers that demonstrated unprecedented adhesion strength and the ability to adhere to many surfaces, which could broaden their potential use