Skip to main content
Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers. Credit: ORNL, U.S. Dept. of Energy

Ten scientists from the Department of Energy’s Oak Ridge National Laboratory are among the world’s most highly cited researchers, according to a bibliometric analysis conducted by the scientific publication analytics firm Clarivate.

Oak Ridge National Laboratory scientist Tomonori Saito shows a 3D-printed sandcastle at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL designed a novel polymer to bind and strengthen silica sand for binder jet additive manufacturing, a 3D-printing method used by industries for prototyping and part production.

A new tool that simulates the energy profile of every building in America will give homeowners, utilities and companies a quick way to determine energy use and cost-effective retrofits that can reduce energy and carbon emissions.

A new tool that simulates the energy profile of every building in America will give homeowners, utilities and companies a quick way to determine energy use and cost-effective retrofits that can reduce energy and carbon emissions.

Gina Accawi, ORNL’s group leader for digital manufacturing and analyses framework, is making sure advanced manufacturing software and systems keep pace in a secure cyberspace and 5G world. Credit: ORNL/U.S. Dept. of Energy

As a computer engineer at Oak Ridge National Laboratory, Gina Accawi has long been the quiet and steady force behind some of the Department of Energy’s most widely used online tools and applications.

Pella Marion

A new Department of Energy report produced by Oak Ridge National Laboratory details national and international trends in hydropower, including the role waterpower plays in enhancing the flexibility and resilience of the power grid.

self-healing elastomers
Researchers at Oak Ridge National Laboratory developed self-healing elastomers that demonstrated unprecedented adhesion strength and the ability to adhere to many surfaces, which could broaden their potential use
An X-ray CT image of a 3D-printed metal turbine blade was reconstructed using ORNL’s neural network and advanced algorithms. Credit: Amir Ziabari/ORNL, U.S. Dept. of Energy

Algorithms developed at Oak Ridge National Laboratory can greatly enhance X-ray computed tomography images of 3D-printed metal parts, resulting in more accurate, faster scans.