Skip to main content
ORNL researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites, demonstrating the potential for the use of large-scale multimaterial preforms to create molded composites. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers combined additive manufacturing with conventional compression molding to produce high-performance thermoplastic composites reinforced with short carbon fibers.

ORNL researchers used gas metal arc welding additive technology to print the die for a B-pillar or vertical roof support structure for a sport utility vehicle, demonstrating a 20% improvement in the cooling rate. Credit: ORNL/U.S. Dept. of Energy

A team of Oak Ridge National Laboratory researchers demonstrated that an additively manufactured hot stamping die – a tool used to create car body components – cooled faster than those produced by conventional manufacturing methods.

ORNL researchers are developing a method to print low-cost, high-fidelity, customizable sensors for monitoring power grid equipment. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A method developed at Oak Ridge National Laboratory to print high-fidelity, passive sensors for energy applications can reduce the cost of monitoring critical power grid assets.

A 3D printed turbine blade demonstrates the use of the new class of nickel-based superalloys that can withstand extreme heat environments without cracking or losing strength. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have demonstrated that a new class of superalloys made of cobalt and nickel remains crack-free and defect-resistant in extreme heat, making them conducive for use in metal-based 3D printing applications.

ORNL recognized the small businesses that have made a positive impact on ORNL’s operations at the virtual 2020 Small Business Awards. Credit: ORNL, U.S. Dept. of Energy

Thirty-two Oak Ridge National Laboratory employees were named among teams recognized by former DOE Secretary Dan Brouillette with Secretary’s Honor Awards as he completed his term. Four teams received new awards that reflect DOE responses to the coronavirus pandemic.

Merlin Theodore holding N95 mask filtration material produced at DOE's Carbon Fiber Technology Facility

Three technologies developed by ORNL researchers have won National Technology Transfer Awards from the Federal Laboratory Consortium. One of the awards went to a team that adapted melt-blowing capabilities at DOE’s Carbon Fiber Technology Facility to enable the production of filter material for N95 masks in the fight against COVID-19.

Researchers at ORNL’s Center for Nanophase Materials Sciences and the University of Tennessee Health Science Center partnered to design a COVID-19 screening whistle for convenient home testing. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Collaborators at Oak Ridge National Laboratory and the University of Tennessee Health Science Center are developing a breath-sampling whistle that could make COVID-19 screening easy to do at home.

Pella Marion

A new Department of Energy report produced by Oak Ridge National Laboratory details national and international trends in hydropower, including the role waterpower plays in enhancing the flexibility and resilience of the power grid.

The 2021 Fuel Economy Guide, compiled by ORNL researchers, provides tips for keeping fuel costs down and helps consumers find the most fuel-efficient vehicle. Credit: ORNL/U.S. Dept. of Energy

Fuel economy can take a tumble when temperatures plummet, according to the Department of Energy’s 2021 Fuel Economy Guide. Compiled by researchers at Oak Ridge National Laboratory, the guide includes several tips to improve a vehicle’s fuel performance.

An X-ray CT image of a 3D-printed metal turbine blade was reconstructed using ORNL’s neural network and advanced algorithms. Credit: Amir Ziabari/ORNL, U.S. Dept. of Energy

Algorithms developed at Oak Ridge National Laboratory can greatly enhance X-ray computed tomography images of 3D-printed metal parts, resulting in more accurate, faster scans.