Skip to main content
ORNL scientist Zhijia Du, white coat, former ORNL scientist Jianlin Li, blue coat, and Ateios CEO Rajan Kumar inspect battery components during a pilot production run. Credit: Kurt Weiss/ORNL, U.S. Dept of Energy

Ateios Systems licensed an ORNL technology for solvent-free battery component production using electron curing. Through Innovation Crossroads, Ateios continues to work with ORNL to enable readiness for production-quality battery components. 

Environmental Sciences Division Director Eric Pierce presented the organization’s 2023 Distinguished Achievement awards at a December 7 all-hands meeting. From left: Megan Johnson, Michael Jones, Maria Colberg, Rachel Pilla, Eric Pierce, Rocio Uria-Martinez, Gbadebo Oladosu and Paul Leiby. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

ORNL Environmental Sciences Division Director Eric Pierce presented the division’s 2023 Distinguished Achievement Awards at the organization’s December all-hands meeting.

Mat Doucet, left, of Oak Ridge National Laboratory and Sarah Blair of the National Renewable Energy Lab used neutrons to understand an electrochemical way to produce ammonia

Scientists from Stanford University and the Department of Energy’s Oak Ridge National Laboratory are turning air into fertilizer without leaving a carbon footprint. Their discovery could deliver a much-needed solution to help meet worldwide carbon-neutral goals by 2050.

2023 Battelle Distinguished Inventors

Four scientists affiliated with ORNL were named Battelle Distinguished Inventors during the lab’s annual Innovation Awards on Dec. 1 in recognition of being granted 14 or more United States patents.

Luiz Leal portrait

ORNL’s Luiz Leal of the Department of Energy’s Oak Ridge National Laboratory is the recipient of the 2023 Seaborg Medal from the American Nuclear Society.

ORNL researcher Anne Campbell will present a paper in Korea next year on materials support of carbon-free nuclear energy. Credit: Adam Malin, U.S. Dept. of Energy

Anne Campbell, a researcher at ORNL, recently won the Young Leaders Professional Development Award from the Minerals, Metals & Materials Society, or TMS, and has been chosen as the first recipient of the Young Leaders International Scholar Program award from TMS and the Korean Institute of Metals and Materials, or KIM.

An electromagnetic pulse, or EMP, can be triggered by a nuclear explosion in the atmosphere or by an electromagnetic generator in a vehicle or aircraft. Here’s the chain of reactions it could cause to harm electrical equipment on the ground. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL have been leading a project to understand how a high-altitude electromagnetic pulse, or EMP, could threaten power plants.

SM2ART team members receive the CAMX Combined Strength Award at the Georgia World Congress Center in Atlanta. Pictured here are, from left, ORNL’s Dan Coughlin, Sana Elyas, Halil Tekinalp, Amber Hubbard, Soydan Ozcan; University of Maine’s Susan MacKay, Angelina Buzzelli, Scott Tomlinson, Wesley Bisson; and ORNL’s Matt Korey and Vlastimil Kunc. Credit: University of Maine

The Hub & Spoke Sustainable Materials & Manufacturing Alliance for Renewable Technologies, or SM2ART, program has been honored with the composites industry’s Combined Strength Award at the Composites and Advanced Materials Expo, or CAMX, 2023 in Atlanta. This distinction goes to the team that applies their knowledge, resources and talent to solve a problem by making the best use of composites materials.

Techstars Industries of the Future Accelerator, a partnership among Techstars, ORNL, the Tennessee Valley Authority and the University of Tennessee System, is based in downtown Knoxville. Credit: Shutterstock

The application to participate in the third cohort of the Techstars Industries of the Future Accelerator in Knoxville, Tennessee, is open through Nov. 29, 2023.

When exposed to radiation, electrons produced within molten zinc chloride, or ZnCl2, can be observed in three distinct singly occupied molecular orbital states, plus a more diffuse, delocalized state. Credit: Hung H. Nguyen/University of Iowa

In a finding that helps elucidate how molten salts in advanced nuclear reactors might behave, scientists have shown how electrons interacting with the ions of the molten salt can form three states with different properties. Understanding these states can help predict the impact of radiation on the performance of salt-fueled reactors.