Skip to main content
The licensing and leadership team behind AMIGO. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A technology developed at ORNL and used by the U.S. Naval Information Warfare Systems Command, or NAVWAR, to test the capabilities of commercial security tools has been licensed to cybersecurity firm Penguin Mustache to create its Evasive.ai platform. The company was founded by the technology’s creator, former ORNL scientist Jared M. Smith, and his business partner, entrepreneur Brandon Bruce.

UKAEA will provide novel fusion materials to be irradiated in ORNL’s HFIR facility over the next four years. From left, Kathy McCarthy, Jeremy Busby, Mickey Wade, Prof Sir Ian Chapman (UKAEA CEO), Cynthia Jenks and Yutai Kato will represent this new partnership. Not pictured: Dr. Amanda Quadling, UKAEA’s Director of Materials Research Facility. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL has entered a strategic research partnership with the United Kingdom Atomic Energy Authority, or UKAEA, to investigate how different types of materials behave under the influence of high-energy neutron sources. The $4 million project is part of UKAEA's roadmap program, which aims to produce electricity from fusion.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

Oak Ridge National Laboratory entrance sign

Zheng Gai, a senior staff scientist at ORNL’s Center for Nanophase Materials Sciences, has been selected as editor-in-chief of the Spin Crossover and Spintronics section of Magnetochemistry.

A new license to U2opia pairs two technologies developed in ORNL’s Cyber Resilience and Intelligence Division: Situ and Heartbeat. Credit: ORNL, U.S. Dept. of Energy

U2opia Technology, a consortium of technology and administrative executives with extensive experience in both industry and defense, has exclusively licensed two technologies from ORNL that offer a new method for advanced cybersecurity monitoring in real time.

Computational systems biologists at ORNL worked with the U.S. Department of Veterans Affairs and other institutions to identify 139 locations across the human genome tied to risk factors for varicose veins, marking a first step in the development of new treatments. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

As part of a multi-institutional research project, scientists at ORNL leveraged their computational systems biology expertise and the largest, most diverse set of health data to date to explore the genetic basis of varicose veins.

Anne Campbell

Anne Campbell, an R&D associate in ORNL’s Materials Science and Technology Division since 2016, has been selected as an associate editor of the Journal of Nuclear Materials.

ORNL is designing a neutronic research engine to evaluate new materials and designs for advanced vehicles using the facilities at the Spallation Neutron Source at ORNL. Credit: Jill Hemman/ORNL, U.S. Dept of Energy, and  Southwest Research Institute.

In the quest for advanced vehicles with higher energy efficiency and ultra-low emissions, ORNL researchers are accelerating a research engine that gives scientists and engineers an unprecedented view inside the atomic-level workings of combustion engines in real time.

Distinguished Inventors

Six scientists at the Department of Energy’s Oak Ridge National Laboratory were named Battelle Distinguished Inventors, in recognition of obtaining 14 or more patents during their careers at the lab.

Fungi use signaling molecules called LCOs to communicate with each other and to regulate growth. Credit: Jessy Labbe/Oak Ridge National Laboratory, U.S. Dept. of Energy

Oak Ridge National Laboratory and collaborators have discovered that signaling molecules known to trigger symbiosis between plants and soil bacteria are also used by almost all fungi as chemical signals to communicate with each other.