Skip to main content
ORNL scientists used new techniques to create long lengths of a composite copper-carbon nanotube material with improved properties for use in electric vehicle traction motors. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory used new techniques to create a composite that increases the electrical current capacity of copper wires, providing a new material that can be scaled for use in ultra-efficient, power-dense electric vehicle traction motors.

An interactive visualization shows potential progression of BECCS to address carbon dioxide reduction goals. Credit: ORNL, U.S. Dept. of Energy

The combination of bioenergy with carbon capture and storage could cost-effectively sequester hundreds of millions of metric tons per year of carbon dioxide in the United States, making it a competitive solution for carbon management, according to a new analysis by ORNL scientists.

Zhenglong Li, an ORNL scientist in the Energy and Transportation Science Division, holds a sample of a catalyst material used to covert ethanol into butene-rich mixed olefins, important intermediates that can then be readily processed into aviation fuels. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Prometheus Fuels has licensed an ethanol-to-jet-fuel conversion process developed by researchers at Oak Ridge National Laboratory. The ORNL technology will enable cost-competitive production of jet fuel and co-production of butadiene for use in renewable polymer synthesis.

ORNL scientists have optimized the Pseudomonas putida bacterium to digest five of the most abundant components of lignocellulosic biomass simultaneously, supporting a highly efficient conversion process to create renewable fuels and chemicals from plants. Credit: Alli Werner/NREL,U.S. Dept of Energy

ORNL scientists have modified a single microbe to simultaneously digest five of the most abundant components of lignocellulosic biomass, a big step forward in the development of a cost-effective biochemical conversion process to turn plants into 

3D printed EMPOWER wall drawing

Oak Ridge National Laboratory researchers used additive manufacturing to build a first-of-its kind smart wall called EMPOWER.

Simulation of short polymer chains

Oak Ridge National Laboratory scientists have discovered a cost-effective way to significantly improve the mechanical performance of common polymer nanocomposite materials.

3D-printed intensified device

Oak Ridge National Laboratory researchers have designed and additively manufactured a first-of-its-kind aluminum device that enhances the capture of carbon dioxide emitted from fossil fuel plants and other industrial processes.

Researcher Chase Joslin uses Peregrine software to monitor and analyze a component being 3D printed at the Manufacturing Demonstration Facility at ORNL. Credit: Luke Scime/ORNL, U.S. Dept. of Energy.

Oak Ridge National Laboratory researchers have developed artificial intelligence software for powder bed 3D printers that assesses the quality of parts in real time, without the need for expensive characterization equipment.

Cars and coronavirus

Oak Ridge National Laboratory researchers have developed a machine learning model that could help predict the impact pandemics such as COVID-19 have on fuel demand in the United States.

Analyses of lung fluid cells from COVID-19 patients conducted on the nation’s fastest supercomputer point to gene expression patterns that may explain the runaway symptoms produced by the body’s response to SARS-CoV-2. Credit: Jason B. Smith/ORNL, U.S. Dept. of Energy

A team led by Dan Jacobson of Oak Ridge National Laboratory used the Summit supercomputer at ORNL to analyze genes from cells in the lung fluid of nine COVID-19 patients compared with 40 control patients.