Skip to main content
ORNL researchers are establishing a digital thread of data, algorithms and workflows to produce a continuously updated model of earth systems.

Digital twins are exactly what they sound like: virtual models of physical reality that continuously update to reflect changes in the real world.

 

Cody Lloyd stands in front of images of historical nuclear field testing. The green and red dots are the machine learning algorithm recognizing features in the image. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Cody Lloyd became a nuclear engineer because of his interest in the Manhattan Project, the United States’ mission to advance nuclear science to end World War II. As a research associate in nuclear forensics at ORNL, Lloyd now teaches computers to interpret data from imagery of nuclear weapons tests from the 1950s and early 1960s, bringing his childhood fascination into his career

Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

After completing a bachelor’s degree in biology, Toya Beiswenger didn’t intend to go into forensics. But almost two decades later, the nuclear security scientist at ORNL has found a way to appreciate the art of nuclear forensics.

Two researchers standing back to back in a grassy area

When geoinformatics engineering researchers at the Department of Energy’s Oak Ridge National Laboratory wanted to better understand changes in land areas and points of interest around the world, they turned to the locals — their data, at least.

JungHyun Bae portrait

JungHyun Bae is a nuclear scientist studying applications of particles that have some beneficial properties: They are everywhere, they are unlimited, they are safe.

Tristen Mullins. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Tristen Mullins enjoys the hidden side of computers. As a signals processing engineer for ORNL, she tries to uncover information hidden in components used on the nation’s power grid — information that may be susceptible to cyberattacks.

Stephen Dahunsi. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Stephen Dahunsi’s desire to see more countries safely deploy nuclear energy is personal. Growing up in Nigeria, he routinely witnessed prolonged electricity blackouts as a result of unreliable energy supplies. It’s a problem he hopes future generations won’t have to experience.

A selfie from the Curiosity rover as it explores the surface of Mars. Like many spacecraft, Curiosity uses a radioisotope power system to help fuel its mission. Credit: NASA/JPL-Caltech/MSSS

Radioactive isotopes power some of NASA’s best-known spacecraft. But predicting how radiation emitted from these isotopes might affect nearby materials is tricky

This photo shows the interior of the vessel of the General Atomics DIII-D National Fusion Facility in San Diego, where ORNL researchers are testing the suitability of tungsten to armor the inside of a fusion device. Credit: General Atomics

The inside of future nuclear fusion energy reactors will be among the harshest environments ever produced on Earth. What’s strong enough to protect the inside of a fusion reactor from plasma-produced heat fluxes akin to space shuttles reentering Earth’s atmosphere?

3D-printed 316L steel has been irradiated along with traditionally wrought steel samples. Researchers are comparing how they perform at various temperatures and varying doses of radiation. Credit: Jaimee Janiga/ORNL

It’s a new type of nuclear reactor core. And the materials that will make it up are novel — products of Oak Ridge National Laboratory’s advanced materials and manufacturing technologies.