Skip to main content
This newly manufactured fixed guide vane of a hydropower turbine system was printed at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Genevieve Martin/ORNL, U.S Dept. of Energy

A new report published by ORNL assessed how advanced manufacturing and materials, such as 3D printing and novel component coatings, could offer solutions to modernize the existing fleet and design new approaches to hydropower.

Researchers at Oak Ridge National Laboratory developed an eco-friendly foam insulation for improved building efficiency. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Scientists at ORNL developed a competitive, eco-friendly alternative made without harmful blowing agents.

Through the Honnold Foundation and Casa Pueblo, solar panels are installed in Adjuntas, Puerto Rico, and hooked to microgrids with battery storage. ORNL researchers are developing a microgrid orchestrator to manage the microgrids together for increased long-term electrical reliability. Credit: Fabio Andrade

ORNL researchers Ben Ollis and Max Ferrari will be in Adjuntas to join the March 18 festivities but also to hammer out more technical details of their contribution to the project: making the microgrids even more reliable.

ORNL researchers have developed a way to manage car batteries of different types and sizes as energy storage for the power grid. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

When aging vehicle batteries lack the juice to power your car anymore, they may still hold energy. Yet it’s tough to find new uses for lithium-ion batteries with different makers, ages and sizes. A solution is urgently needed because battery recycling options are scarce.

An Oak Ridge National Laboratory study used satellites to transmit light particles, or photons, as part of a more efficient, secure quantum network. Credit: ORNL, U.S. Dept. of Energy

A study by Oak Ridge National Laboratory researchers has demonstrated how satellites could enable more efficient, secure quantum networks.

Researchers captured atomic-level insights on the rare-earth mineral monazite to inform future design of flotation collector molecules, illustrated above, that can aid in the recovery of critical materials. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Critical Materials Institute researchers at Oak Ridge National Laboratory and Arizona State University studied the mineral monazite, an important source of rare-earth elements, to enhance methods of recovering critical materials for energy, defense and manufacturing applications.

A team of ORNL researchers used neutron diffraction experiments to study the 3D-printed ACMZ alloy and observed a phenomenon called “load shuffling” that could inform the design of stronger, better-performing lightweight materials for vehicles. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers have identified a mechanism in a 3D-printed alloy – termed “load shuffling” — that could enable the design of better-performing lightweight materials for vehicles.

Lightning strike test

Researchers at Oak Ridge National Laboratory demonstrated that an additively manufactured polymer layer, when applied to carbon fiber reinforced plastic, or CFRP, can serve as an effective protector against aircraft lightning strikes.

Oak Ridge National Laboratory scientists have developed an experiment for testing potential materials for use in interplanetary travel. The experiment exposes prototype materials to temperatures over 2,400 degrees Celsius with only 300 watts of input electrical power. Credit: Carlos Jones, Oak Ridge National Laboratory, U.S. Dept. of Energy

If humankind reaches Mars this century, an Oak Ridge National Laboratory-developed experiment testing advanced materials for spacecraft may play a key role. 

Shown here is a computer-aided design of the hot stamping die with visible cooling channels. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy

Researchers demonstrated that an additively manufactured hot stamping die can withstand up to 25,000 usage cycles, proving that this technique is a viable solution for production.