Skip to main content
Merlin Theodore, advanced fibers manufacturing group leader and Tuskegee University alumna, will guide Oak Ridge National Laboratory’s collaboration with the university, through which students and researchers work together to advance the development of bioderived materials. Credit: ORNL, U.S. Dept. of Energy

ORNL and Tuskegee University have formed a partnership to develop new biodegradable materials for use in buildings, transportation and biomedical applications.

ORNL used novel additive manufacturing techniques to 3D print channel fasteners for Framatome’s boiling water reactor fuel assembly. Four components, like the one shown here, were installed at the TVA Browns Ferry nuclear plant. Credit: Framatome

Four first-of-a-kind 3D-printed fuel assembly brackets, produced at the Department of Energy’s Manufacturing Demonstration Facility at Oak Ridge National Laboratory, have been installed and are now under routine operating

ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries

Vittorio Badalassi, left, of Oak Ridge National Laboratory leads the Fusion Energy Reactor Models Integrator, or FERMI, project, and collaborates with ORNL computational physicist David Green. FERMI applies fission platforms to fusion reactor design. Credit: Commonwealth Fusion Systems and Colby Earles/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory expertise in fission and fusion has come together to form a new collaboration, the Fusion Energy Reactor Models Integrator, or FERMI

Verónica Melesse Vergara speaks with third and fourth graders at East Side Intermediate School in Brownsville. Credit: ORNL, U.S. Dept. of Energy

Twenty-seven ORNL researchers Zoomed into 11 middle schools across Tennessee during the annual Engineers Week in February. East Tennessee schools throughout Oak Ridge and Roane, Sevier, Blount and Loudon counties participated, with three West Tennessee schools joining in.

Martin Wissink of ORNL’s Buildings and Transportation Science Division applies neutrons and other diagnostic tools at Oak Ridge National Laboratory in pursuit of cleaner, sustainable and more flexible transportation technologies. Credit: Genevieve Martin/ORNL, U.S. Dept of Energy

For a researcher who started out in mechanical engineering with a focus on engine combustion, Martin Wissink has learned a lot about neutrons on the job

A 3D printed turbine blade demonstrates the use of the new class of nickel-based superalloys that can withstand extreme heat environments without cracking or losing strength. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have demonstrated that a new class of superalloys made of cobalt and nickel remains crack-free and defect-resistant in extreme heat, making them conducive for use in metal-based 3D printing applications.

Merlin Theodore holding N95 mask filtration material produced at DOE's Carbon Fiber Technology Facility

Three technologies developed by ORNL researchers have won National Technology Transfer Awards from the Federal Laboratory Consortium. One of the awards went to a team that adapted melt-blowing capabilities at DOE’s Carbon Fiber Technology Facility to enable the production of filter material for N95 masks in the fight against COVID-19.

Small, 3D-printed neutron collimators, designed by ORNL’s Jamie Molaison, yield reduced costs and manufacturing times and could enable new types of experiments. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

The ExOne Company, the global leader in industrial sand and metal 3D printers using binder jetting technology, announced it has reached a commercial license agreement with Oak Ridge National Laboratory to 3D print parts in aluminum-infiltrated boron carbide.

In situ monitoring to evaluate nickel-based superalloys as they are printing gave Mike Kirka, an ORNL materials scientist, the ability to see potential weaknesses that could lead to part failure. Credit: ORNL/U.S. Dept. of Energy

Growing up in the heart of the American automobile industry near Detroit, Oak Ridge National Laboratory materials scientist Mike Kirka was no stranger to manufacturing.