Skip to main content
Oak Ridge National Laboratory scientists are enhancing the performance of polymer materials for next-generation lithium batteries. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

New polymer materials under development at Oak Ridge National Laboratory could enable safer, more stable batteries needed for electric vehicles and grid energy storage.

Collaborators at ORNL’s Center for Nanophase Materials Sciences used advanced microscopy to enhance materials for next-generation devices. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory and Korea’s Sungkyunkwan University are using advanced microscopy to nanoengineer promising materials for computing and electronics in a beyond-Moore era.

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions. Credit: Getty Images

Oak Ridge National Laboratory researchers developed an invertible neural network, a type of artificial intelligence that mimics the human brain, to improve accuracy in climate-change models and predictions.

Adrian Sabau

Adrian Sabau of the Department of Energy’s Oak Ridge National Laboratory has been named an ASM International Fellow.

Frontier has arrived, and ORNL is preparing for science on Day One. Credit: Carlos Jones/ORNL, Dept. of Energy

The Frontier supercomputer at the Department of Energy’s Oak Ridge National Laboratory earned the top ranking today as the world’s fastest on the 59th TOP500 list, with 1.1 exaflops of performance. The system is the first to achieve an unprecedented level of computing performance known as exascale, a threshold of a quintillion calculations per second.

MDF Exterior

ORNL scientists will present new technologies available for licensing during the annual Technology Innovation Showcase. The event is 9 a.m. to 3 p.m. Thursday, June 16, at the Manufacturing Demonstration Facility at ORNL’s Hardin Valley campus.

A smart approach to microscopy and imaging developed at Oak Ridge National Laboratory could drive discoveries in materials for future technologies. Credit: Adam Malin/ORNL, U.S. Dept. of Energy

Researchers at ORNL are teaching microscopes to drive discoveries with an intuitive algorithm, developed at the lab’s Center for Nanophase Materials Sciences, that could guide breakthroughs in new materials for energy technologies, sensing and computing.

Virginia-based battery technology company, BTRY, has licensed several electrolyte and thin-film coating technologies, developed at Oak Ridge National Laboratory, to make batteries with increased energy density, at lower cost, and with an improved safety profile in crashes. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Several electrolyte and thin-film coating technologies, developed at Oak Ridge National Laboratory, have been licensed by BTRY, a battery technology company based in Virginia, to make batteries with increased energy density, at lower cost, and with an improved safety profile in crashes.

Researchers at Oak Ridge National Laboratory demonstrated center-of-mass scanning transmission electron microscopy to observe lithium along with heavier elements in battery materials at atomic resolution. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers demonstrated an electron microscopy technique for imaging lithium in energy storage materials, such as lithium ion batteries, at the atomic scale.

Scientists, from left, Parans Paranthaman, Tina Summers and Merlin Theodore at the DOE’s Carbon Fiber Technology Facility at ORNL are partnering with industry and university to develop antiviral materials for N95 masks. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers collaborated with Iowa State University and RJ Lee Group to demonstrate a safe and effective antiviral coating for N95 masks. The coating destroys the COVID-19-causing coronavirus and could enable reuse of masks made from various fabrics.