Skip to main content
ORNL’s Climate Change Science Institute and Georgia Tech co-hosted a Southeast Decarbonization Workshop in November 2023. Credit: ORNL, U.S. Dept. of Energy

ORNL's Climate Change Science Institute and the Georgia Institute of Technology hosted a Southeast Decarbonization Workshop in November that drew scientists and representatives from government, industry, non-profits and other organizations to 

Conceptual art depicts machine learning finding an ideal material for capacitive energy storage. Its carbon framework (black) has functional groups with oxygen (pink) and nitrogen (turquoise). Credit: Tao Wang/ORNL, U.S. Dept. of Energy

Guided by machine learning, chemists at ORNL designed a record-setting carbonaceous supercapacitor material that stores four times more energy than the best commercial material.

Scientists at Oak Ridge National Laboratory contributed to several chapters of the Fifth National Climate Assessment, providing expertise in complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling. Credit: ORNL, U.S. Dept. of Energy

Scientists at ORNL used their knowledge of complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling to inform the nation’s latest National Climate Assessment, which draws attention to vulnerabilities and resilience opportunities in every region of the country.

An illustration of the lattice examined by Phil Anderson in the early ‘70s. Shown as green ellipses, pairs of quantum particles fluctuated among multiple combinations to produce a spin liquid state.

A team of researchers associated with the Quantum Science Center headquartered at the Department of Energy's Oak Ridge National Laboratory has confirmed the presence of quantum spin liquid behavior in a new material with a triangular lattice, KYbSe2.

Kim Tutin, founder and chief executive officer of Captis Aire, receives the EPA Green Chemistry Challenge Award. Credit: Eric Vance/USEPA

The founder of a startup company who is working with ORNL has won an Environmental Protection Agency Green Chemistry Challenge Award for a unique air pollution control technology. 

Group image

In response to a renewed international interest in molten salt reactors, researchers from the Department of Energy’s Oak Ridge National Laboratory have developed a novel technique to visualize molten salt intrusion in graphite.

Researchers have shown how an all-solid lithium-based electrolyte material can be used to develop fast charging, long-range batteries for electric vehicles that are also safer than conventional designs. Credit: ORNL, U.S. Dept. of Energy

Currently, the biggest hurdle for electric vehicles, or EVs, is the development of advanced battery technology to extend driving range, safety and reliability.

Sam Hollifield displays a prototype of the Secure Hijack, Intrusion and Exploit Layered Detector, or SHIELD, the device monitoring the cybersecurity of the semi-truck. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

As vehicles gain technological capabilities, car manufacturers are using an increasing number of computers and sensors to improve situational awareness and enhance the driving experience.

When exposed to radiation, electrons produced within molten zinc chloride, or ZnCl2, can be observed in three distinct singly occupied molecular orbital states, plus a more diffuse, delocalized state. Credit: Hung H. Nguyen/University of Iowa

In a finding that helps elucidate how molten salts in advanced nuclear reactors might behave, scientists have shown how electrons interacting with the ions of the molten salt can form three states with different properties. Understanding these states can help predict the impact of radiation on the performance of salt-fueled reactors.

The OpeN-AM experimental platform, installed at the VULCAN instrument at ORNL’s Spallation Neutron Source, features a robotic arm that prints layers of molten metal to create complex shapes. This allows scientists to study 3D printed welds microscopically. Credit: Jill Hemman, ORNL/U.S. Dept. of Energy

Using neutrons to see the additive manufacturing process at the atomic level, scientists have shown that they can measure strain in a material as it evolves and track how atoms move in response to stress.