Skip to main content
ORNL_graphene_substrate

A new method to produce large, monolayer single-crystal-like graphene films more than a foot long relies on harnessing a “survival of the fittest” competition among crystals. The novel technique, developed by a team led by Oak Ridge National Laboratory, may open new opportunities for growing the high-quality two-dimensional materials necessary for long-awaited practical applications.

ORNL Director Thomas Zacharia (center, seated) visited Robertsville Middle School to present a check in support of the school’s CubeSat efforts.

Last November a team of students and educators from Robertsville Middle School in Oak Ridge and scientists from Oak Ridge National Laboratory submitted a proposal to NASA for their Cube Satellite Launch Initiative in hopes of sending a student-designed nanosatellite named RamSat into...

Juan Carlos Idrobo
For Juan Carlos Idrobo, the scientist’s journey is like taking a test that is only two pages long. You start reading the first page, but you don’t understand any of the questions. You keep reading and after a while a light turns on and you begin to understand. “You work really, re...
Using neutrons, an ORNL research team studied the protein structure of bacteria-produced enzymes called beta-lactamases by examining one of them to better understand how resistant bacteria behave.
New insights into certain catalytic enzymes formed by bacteria to break down antibiotics may lead to the design of drugs better equipped to combat resistant bacteria. Scientists at Oak Ridge National Laboratory used neutron crystallography at the lab’s Spallation Neutron Source to st...
Over time, algae biofilms accumulated on glass washers affixed to a plastic pegboard submerged in East Fork Poplar Creek in Oak Ridge, Tenn. ORNL researchers further analyzed the samples in the laboratory to determine the production of methylmercury.
Analyses of creek algae informed a new model that can more accurately predict the presence of the neurotoxin methylmercury in small headwater ecosystems. For about two years, Oak Ridge National Laboratory scientists studied biofilms collected during different seasons and from various...
ORNL’s Jim Szybist works with a multi-cylinder engine at the lab’s National Transportation Research Center. Credit: Jason Richards/Oak Ridge National Laboratory, U.S. Dept. of Energy

Gasoline-powered automobiles could achieve an 8 percent or greater fuel efficiency gain through a new combustion strategy developed at Oak Ridge National Laboratory. Scientists have demonstrated a new method for reforming fuel over a catalyst, a process that chemically converts fuel ...

ORNL researchers married helium-ion microscopy with a liquid cell from North Carolina-based Protochips Inc., to fabricate exceedingly pure, precise platinum structures. Credit: Stephen Jesse/Oak Ridge National Laboratory, U.S. Dept. of Energy
Oak Ridge National Laboratory researchers have directly written high-purity metallic structures narrower than a cold virus—which could open nanofabrication opportunities in electronics, drug delivery, catalysis and chemical separations. At ORNL’s Center for Nanophase Materials Scienc...
Small modular reactor computer simulation

Nuclear scientists at Oak Ridge National Laboratory are retooling existing software used to simulate radiation transport in small modular reactors, or SMRs, to run more efficiently on next-generation supercomputers. ORNL is working on various aspects of advanced SMR designs through s...

Oak Ridge National Laboratory’s Stacy Davis has a trove of transportation facts and trends at her fingertips.

For anyone seeking comprehensive data and analysis regarding the vehicle technology market, all roads lead to Oak Ridge National Laboratory’s Stacy Davis. Unflagging curiosity, an ability to read trends, and an eagle eye for detail are the tools that drive Davis’s work creatin...

Shown as green spheres, microcapsules containing the polymer manganoporphyrin, a newly developed antioxidant (green), the natural antioxidant tannic acid (yellow), and a binding material (blue), can be analyzed for stability and efficiency with neutrons.
Many natural and synthetic antioxidants help defend the body against oxidative stress—a biochemical imbalance that can damage cells and lead to illnesses such as diabetes, Alzheimer’s and cancer. However, these materials can become unstable and less effective over time. A new ...