Skip to main content
Merlin Theodore, advanced fibers manufacturing group leader and Tuskegee University alumna, will guide Oak Ridge National Laboratory’s collaboration with the university, through which students and researchers work together to advance the development of bioderived materials. Credit: ORNL, U.S. Dept. of Energy

ORNL and Tuskegee University have formed a partnership to develop new biodegradable materials for use in buildings, transportation and biomedical applications.

An open-source code developed by an ORNL-led team could provide new insights into the everyday operation of the nation’s power grid. Credit: Pixabay

Oak Ridge National Laboratory, University of Tennessee and University of Central Florida researchers released a new high-performance computing code designed to more efficiently examine power systems and identify electrical grid disruptions, such as

ORNL researchers are examining ways to increase the amount of carbon sequestered in soils by crops such as switchgrass. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Nearly a billion acres of land in the United States is dedicated to agriculture, producing more than a trillion dollars of food products to feed the country and the world. Those same agricultural processes, however, also produced an estimated 700 million metric tons of carbon dioxide equivalent in 2018, according to the U.S. Department of Agriculture.

ORNL’s particle entanglement machine is a precursor to the device that researchers at the University of Oklahoma are building, which will produce entangled quantum particles for quantum sensing to detect underground pipeline leaks. Credit: ORNL, U.S. Dept. of Energy

To minimize potential damage from underground oil and gas leaks, Oak Ridge National Laboratory is co-developing a quantum sensing system to detect pipeline leaks more quickly.

The REVISE-II modeling tool developed at ORNL supports decision-making for electric vehicle charging infrastructure development along interstate highways in support of intercity travel. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

Researchers at Oak Ridge National Laboratory have developed a nationwide modeling tool to help infrastructure planners decide where and when to locate electric vehicle charging stations along interstate highways. The goal is to encourage the adoption of EVs for cross-country travel.

An algorithm developed and field-tested by ORNL researchers uses machine learning to maintain homeowners’ preferred temperatures year-round while minimizing energy costs. Credit: ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers designed and field-tested an algorithm that could help homeowners maintain comfortable temperatures year-round while minimizing utility costs.

ORNL’s green solvent enables environmentally friendly recycling of valuable Li-ion battery materials. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory have developed a solvent that results in a more environmentally friendly process to recover valuable materials from used lithium-ion batteries, supports a stable domestic supply chain for new batteries

Spin chains in a quantum system undergo a collective twisting motion as the result of quasiparticles clustering together. Demonstrating this KPZ dynamics concept are pairs of neighboring spins, shown in red, pointing upward in contrast to their peers, in blue, which alternate directions. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Using complementary computing calculations and neutron scattering techniques, researchers from the Department of Energy’s Oak Ridge and Lawrence Berkeley national laboratories and the University of California, Berkeley, discovered the existence of an elusive type of spin dynamics in a quantum mechanical system.

Urban climate modeling

Researchers at Oak Ridge National Laboratory have identified a statistical relationship between the growth of cities and the spread of paved surfaces like roads and sidewalks. These impervious surfaces impede the flow of water into the ground, affecting the water cycle and, by extension, the climate.

Saplings in an aspen grove recovering from wildfire have more fungal pathogens in their leaves than the original trees. Credit: Chris Schadt/ORNL, U.S. Dept. of Energy

An Oak Ridge National Laboratory research team discovered that aspen saplings emerging after wildfire have less diverse microbiomes and more pathogens in their leaves, providing new insights about how fire affects ecosystem recovery.