Skip to main content
Researchers found that moderate levels of ash — sometimes found as spheres in biomass — do not significantly affect the mechanical properties of biocomposites made up of corn stover, switchgrass and PLA thermoplastic. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

The presence of minerals called ash in plants makes little difference to the fitness of new naturally derived compound materials designed for additive manufacturing, an Oak Ridge National Laboratory-led team found.

When an electron beam drills holes in heated graphene, single-atom vacancies, shown in purple, diffuse until they join with other vacancies to form stationary structures and chains, shown in blue. Credit: Ondrej Dyck/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory researchers serendipitously discovered when they automated the beam of an electron microscope to precisely drill holes in the atomically thin lattice of graphene, the drilled holes closed up.

Researchers at ORNL designed a recyclable carbon fiber material to promote low-carbon manufacturing. Credit: Chad Malone/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists designed a recyclable polymer for carbon-fiber composites to enable circular manufacturing of parts that boost energy efficiency in automotive, wind power and aerospace applications.

This diagram demonstrates how a concentrating solar thermal plant could use molten salts to store solar energy that could later be used to generate electricity. Credit: Jaimee Janiga/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory scientists recently demonstrated a low-temperature, safe route to purifying molten chloride salts that minimizes their ability to corrode metals. This method could make the salts useful for storing energy generated from the sun’s heat.

The AI-driven HyperCT platform has three primary points of articulation that can rotate a sample in almost any direction, eliminating the need for human intervention and significantly reducing lengthy experiment times. Credit: Genevieve Martin, ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers are developing a first-of-its-kind artificial intelligence device for neutron scattering called Hyperspectral Computed Tomography, or HyperCT.

Oak Ridge National Laboratory researchers used an invertible neural network, a type of artificial intelligence that mimics the human brain, to select the most suitable materials for desired properties, such as flexibility or heat resistance, with high chemical accuracy. The study could lead to more customizable materials design for industry.

A study led by researchers at ORNL could help make materials design as customizable as point-and-click.

Using quantum Monte Carlo methods, the researchers simulated bulk VO2. Yellow and turquoise represent changes in electron density between the excited and ground states of a compound composed of oxygen, in red, and vanadium, in blue, which allowed them to evaluate how an oxygen vacancy, in white, can alter the compound’s properties. Credit: Panchapakesan Ganesh/ORNL, U.S. Dept. of Energy

Neuromorphic devices — which emulate the decision-making processes of the human brain — show great promise for solving pressing scientific problems, but building physical systems to realize this potential presents researchers with a significant

From left, Amit Naskar, Ngoc Nguyen and Christopher Bowland in ORNL’s Carbon and Composites Group bring a new capability—structural health monitoring—to strong, lightweight materials promising for transportation applications.

Carbon fiber composites—lightweight and strong—are great structural materials for automobiles, aircraft and other transportation vehicles. They consist of a polymer matrix, such as epoxy, into which reinforcing carbon fibers have been embedded. Because of differences in the mecha...

3D printed permanent magnets with increased density were made from an improved mixture of materials, which could lead to longer lasting, better performing magnets for electric motors, sensors and vehicle applications. Credit: Jason Richards/Oak Ridge Nati

Oak Ridge National Laboratory scientists have improved a mixture of materials used to 3D print permanent magnets with increased density, which could yield longer lasting, better performing magnets for electric motors, sensors and vehicle applications. Building on previous research, ...

Rose Ruther and Jagjit Nanda have been collaborating to develop a membrane for a low-cost redox flow battery for grid-scale energy storage.

Oak Ridge National Laboratory scientists have developed a crucial component for a new kind of low-cost stationary battery system utilizing common materials and designed for grid-scale electricity storage. Large, economical electricity storage systems can benefit the nation’s grid ...