Skip to main content
Karen White

Karen White, who works in ORNL’s Neutron Science Directorate, has been honored with a Lifetime Achievement Award.

ORNL’s Climate Change Science Institute and Georgia Tech co-hosted a Southeast Decarbonization Workshop in November 2023. Credit: ORNL, U.S. Dept. of Energy

ORNL's Climate Change Science Institute and the Georgia Institute of Technology hosted a Southeast Decarbonization Workshop in November that drew scientists and representatives from government, industry, non-profits and other organizations to 

ORNL Composites Innovation staff members David Nuttall, left, and Vipin Kumar use additive manufacturing compression molding to produce a composite-based finished part in minutes. AMCM technology could accelerate decarbonization of the automobile and aerospace industries. Credit: ORNL, U.S. Dept. of Energy

Researchers at ORNL are extending the boundaries of composite-based materials used in additive manufacturing, or AM. ORNL is working with industrial partners who are exploring AM, also known as 3D printing, as a path to higher production levels and fewer supply chain interruptions.

The sun sets behind the ORNL Visitor Center in this aerial photo from April 2023. Credit: Kase Clapp/ORNL, U.S. Dept. of Energy

In fiscal year 2023 — Oct. 1–Sept. 30, 2023 — Oak Ridge National Laboratory was awarded more than $8 million in technology maturation funding through the Department of Energy’s Technology Commercialization Fund, or TCF.

The students analyzed diatom images like this one to compare wild and genetically modified strains of these organisms. Credit: Alison Pawlicki/Oak Ridge National Laboratory, US Department of Energy.

Students often participate in internships and receive formal training in their chosen career fields during college, but some pursue professional development opportunities even earlier.

Alex Johs at ORNL's Spallation Neutron Source

Sometimes solutions to the biggest problems can be found in the smallest details. The work of biochemist Alex Johs at Oak Ridge National Laboratory bears this out, as he focuses on understanding protein structures and molecular interactions to resolve complex global problems like the spread of mercury pollution in waterways and the food supply.

The illustrations show how the correlation between lattice distortion and proton binding energy in a material affects proton conduction in different environments. Mitigating this interaction could help researchers improve the ionic conductivity of solid materials.

Ionic conduction involves the movement of ions from one location to another inside a material. The ions travel through point defects, which are irregularities in the otherwise consistent arrangement of atoms known as the crystal lattice. This sometimes sluggish process can limit the performance and efficiency of fuel cells, batteries, and other energy storage technologies.