Skip to main content
This newly manufactured fixed guide vane of a hydropower turbine system was printed at the DOE Manufacturing Demonstration Facility at ORNL. Credit: Genevieve Martin/ORNL, U.S Dept. of Energy

A new report published by ORNL assessed how advanced manufacturing and materials, such as 3D printing and novel component coatings, could offer solutions to modernize the existing fleet and design new approaches to hydropower.

Through the Honnold Foundation and Casa Pueblo, solar panels are installed in Adjuntas, Puerto Rico, and hooked to microgrids with battery storage. ORNL researchers are developing a microgrid orchestrator to manage the microgrids together for increased long-term electrical reliability. Credit: Fabio Andrade

ORNL researchers Ben Ollis and Max Ferrari will be in Adjuntas to join the March 18 festivities but also to hammer out more technical details of their contribution to the project: making the microgrids even more reliable.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

ORNL researchers have developed a way to manage car batteries of different types and sizes as energy storage for the power grid. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

When aging vehicle batteries lack the juice to power your car anymore, they may still hold energy. Yet it’s tough to find new uses for lithium-ion batteries with different makers, ages and sizes. A solution is urgently needed because battery recycling options are scarce.

Drawing of skyrmions spins

Scientists discovered a strategy for layering dissimilar crystals with atomic precision to control the size of resulting magnetic quasi-particles called skyrmions.

Simulation of short polymer chains

Oak Ridge National Laboratory scientists have discovered a cost-effective way to significantly improve the mechanical performance of common polymer nanocomposite materials.

Cars and coronavirus

Oak Ridge National Laboratory researchers have developed a machine learning model that could help predict the impact pandemics such as COVID-19 have on fuel demand in the United States.

SPRUCE experiment

Oak Ridge National Laboratory scientists evaluating northern peatland responses to environmental change recorded extraordinary fine-root growth with increasing temperatures, indicating that this previously hidden belowground mechanism may play an important role in how carbon-rich peatlands respond to warming.

ORNL’s Lab-on-a-crystal uses machine learning to correlate materials’ mechanical, optical and electrical responses to dynamic environments. Credit: Ilia Ivanov/ORNL, U.S. Dept. of Energy

An all-in-one experimental platform developed at Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences accelerates research on promising materials for future technologies.

Map with focus on sub-saharan Africa

Researchers at Oak Ridge National Laboratory developed a method that uses machine learning to predict seasonal fire risk in Africa, where half of the world’s wildfire-related carbon emissions originate.