Skip to main content
A small droplet of water is suspended in midair via an electrostatic levitator that lifts charged particles using an electric field that counteracts gravity. Credit: Iowa State University/ORNL, U.S. Dept. of Energy

How do you get water to float in midair? With a WAND2, of course. But it’s hardly magic. In fact, it’s a scientific device used by scientists to study matter.

Researchers have shown how an all-solid lithium-based electrolyte material can be used to develop fast charging, long-range batteries for electric vehicles that are also safer than conventional designs. Credit: ORNL, U.S. Dept. of Energy

Currently, the biggest hurdle for electric vehicles, or EVs, is the development of advanced battery technology to extend driving range, safety and reliability.

UKAEA will provide novel fusion materials to be irradiated in ORNL’s HFIR facility over the next four years. From left, Kathy McCarthy, Jeremy Busby, Mickey Wade, Prof Sir Ian Chapman (UKAEA CEO), Cynthia Jenks and Yutai Kato will represent this new partnership. Not pictured: Dr. Amanda Quadling, UKAEA’s Director of Materials Research Facility. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL has entered a strategic research partnership with the United Kingdom Atomic Energy Authority, or UKAEA, to investigate how different types of materials behave under the influence of high-energy neutron sources. The $4 million project is part of UKAEA's roadmap program, which aims to produce electricity from fusion.

From left are UWindsor students Isabelle Dib, Dominik Dziura, Stuart Castillo and Maksymilian Dziura at ORNL’s Neutron Spin Echo spectrometer. Their work advances studies on a natural cancer treatment. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

A scientific instrument at ORNL could help create a noninvasive cancer treatment derived from a common tropical plant.

Heat is typically carried through a material by vibrations known as phonons. In some crystals, however, different atomic motions — known as phasons — carry heat three times faster and farther. This illustration shows phasons made by rearranging atoms, shown by arrows. Credit: Jill Hemman/ORNL, U.S. Dept. of Energy

Warming a crystal of the mineral fresnoite, ORNL scientists discovered that excitations called phasons carried heat three times farther and faster than phonons, the excitations that usually carry heat through a material.

Using as much as 50 percent lignin by weight, a new composite material created at ORNL is well suited for use in 3D printing.

Scientists at the Department of Energy’s Oak Ridge National Laboratory have created a recipe for a renewable 3D printing feedstock that could spur a profitable new use for an intractable biorefinery byproduct: lignin.

ORNL researchers Todd Toops, Charles Finney, and Melanie DeBusk (left to right) hold an example of a particulate filter used to collect harmful emissions in vehicles.

Researchers are looking to neutrons for new ways to save fuel during the operation of filters that clean the soot, or carbon and ash-based particulate matter, emitted by vehicles. A team of researchers from the Energy and Transportation Science Division at the Department of En...