Skip to main content
Through a new technical collaboration program, companies will be able to propose research projects that utilize the labs and expertise in ORNL’s Grid Research Integration and Deployment Center. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A new technical collaboration program at the Department of Energy’s Oak Ridge National Laboratory will help businesses develop and launch electric grid innovations. Sponsored by the Transformer Resilience and Advanced Components program in DOE’s Office of Electricity, the initiative will provide companies with access to national laboratory resources, enabling them to capture market opportunities. 

ORNL's Spallation Neutron Source, the nation’s leading source of pulsed neutron beams for research, was recently restarted after nine months of upgrade work. Credit: ORNL, U.S. Dept. of Energy

ORNL's Spallation Neutron Source, the nation’s leading source of pulsed neutron beams for research, was recently restarted after nine months of upgrade work. 

Takeshi Egami stands at his workstation at ORNL’s Spallation Neutron Source where he used novel experimental methods to propose the density wave theory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Distinguished materials scientist Takeshi Egami has spent his career revealing the complex atomic structure of metallic glass and other liquids — sometimes sharing theories with initially resistant minds in the scientific community. 

ORNL scientists used molecular dynamics simulations, exascale computing, lab testing and analysis to accelerate the development of an energy-saving method to produce nanocellulosic fibers.

A team led by scientists at ORNL identified and demonstrated a method to process a plant-based material called nanocellulose that reduced energy needs by a whopping 21%, using simulations on the lab’s supercomputers and follow-on analysis.

Flexcon Global gathered with ORNL to license two patented inventions

Flexcon Global has exclusively licensed two patented inventions to manufacture a self-healing barrier film from ORNL for research and development purposes. The film can be incorporated into vacuum insulation panels to increase the efficiency of buildings during retrofits. Under a cooperative research and development agreement that began in 2021, Flexcon and ORNL have been exploring the capabilities of the technology and fine-tuning its properties.

ORNL researchers demonstrated the use of drones equipped with cameras and other sensors to check power lines at an EPB of Chattanooga training center for electrical line workers.

Researchers at ORNL recently demonstrated an automated drone-inspection technology at EPB of Chattanooga that will allow utilities to more quickly and easily check remote power lines for malfunctions, catching problems before outages occur.

Weyl semimetal

At ORNL, a group of scientists used neutron scattering techniques to investigate a relatively new functional material called a Weyl semimetal. These Weyl fermions move very quickly in a material and can carry electrical charge at room temperature. Scientists think that Weyl semimetals, if used in future electronics, could allow electricity to flow more efficiently and enable more energy-efficient computers and other electronic devices.

This photo is of a male scientist sitting at a desk working with materials, wearing protective glasses.

Researchers at the Department of Energy’s Oak Ridge National Laboratory and partner institutions have launched a project to develop an innovative suite of tools that will employ machine learning algorithms for more effective cybersecurity analysis of the U.S. power grid. 

ORNL researchers Phani Marthi and Suman Debnath work on developing and scaling up new EMT simulation software to analyze how power electronics in the electric grid will respond to brief interruptions in power flow. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Power companies and electric grid developers turn to simulation tools as they attempt to understand how modern equipment will be affected by rapidly unfolding events in a complex grid. 

Power lines to the right, colorful graphs to the left and in the middle is a cord putting out electrical currents.

Researchers at Oak Ridge National Laboratory have opened a new virtual library where visitors can check out waveforms instead of books. So far, more than 350 users worldwide have utilized the library, which provides vital understanding of an increasingly complex grid.