Skip to main content
ORNL scientists used molecular dynamics simulations, exascale computing, lab testing and analysis to accelerate the development of an energy-saving method to produce nanocellulosic fibers.

A team led by scientists at ORNL identified and demonstrated a method to process a plant-based material called nanocellulose that reduced energy needs by a whopping 21%, using simulations on the lab’s supercomputers and follow-on analysis.

The Frontier supercomputer simulated magnetic responses inside calcium-48, depicted by red and blue spheres. Insights into the nucleus’s fundamental forces could shed light on supernova dynamics.

Nuclear physicists at the Department of Energy’s Oak Ridge National Laboratory recently used Frontier, the world’s most powerful supercomputer, to calculate the magnetic properties of calcium-48’s atomic nucleus. 

Exploding stars, a glowing light

Scientists have determined that a rare element found in some of the oldest solids in the solar system, such as meteorites, and previously thought to have been forged in supernova explosions, actually predate such cosmic events, challenging long-held theories about its origin.

Angelique Adams, front left, introduces Kusum Rathore, front center, executive director and vice president of the multi-campus office at the University of Tennessee Research Foundation, and Jim Biggs, executive director of the Knoxville Entrepreneur Center, during the final presentation event for ORNL’s Safari coaching program.

Five researchers at the Department of Energy’s Oak Ridge National Laboratory recently completed an eight-week pilot commercialization coaching program as part of Safari, a program funded by DOE’s Office of Technology Transitions, or OTT, Practices to Accelerate the Commercialization of Technologies, or PACT. 

This is an image of a man sitting at a computer with three screens.

Researchers conduct largest, most accurate molecular dynamics simulations to date of two million correlated electrons using Frontier, the world’s fastest supercomputer. The simulation, which exceed an exaflop using full double precision, is 1,000 times greater in size and speed than any quantum chemistry simulation of it's kind.

Digital image of molecules would look like. There are 10 clusters of these shapes in grey, red and blue with a teal blue background

Oak Ridge National Laboratory scientists have developed a method leveraging artificial intelligence to accelerate the identification of environmentally friendly solvents for industrial carbon capture, biomass processing, rechargeable batteries and other applications.

Colorful circles with symbols of Vc, Vh and Vt inside. Blue, Orange and Pink

Researchers used quantum simulations to obtain new insights into the nature of neutrinos — the mysterious subatomic particles that abound throughout the universe — and their role in the deaths of massive stars.

Woman is standing at podium holding a gavel in the air.

In May, the Department of Energy’s Oak Ridge and Brookhaven national laboratories co-hosted the 15th annual International Particle Accelerator Conference, or IPAC, at the Music City Center in Nashville, Tennessee. 

Woman with dark brown hair, glasses wearing a green shirt underneath a black blazer jacket smiling for a photo in front of blue backdrop

Erin Webb, lead for the Bioresources Science and Engineering group at Oak Ridge National Laboratory, has been elected a Fellow of the American Society of Agricultural and Biological Engineers — the society’s highest honor. 

Man in blue shirt and grey pants holds laptop and poses next to a green plant in a lab.

John Lagergren, a staff scientist in Oak Ridge National Laboratory’s Plant Systems Biology group, is using his expertise in applied math and machine learning to develop neural networks to quickly analyze the vast amounts of data on plant traits amassed at ORNL’s Advanced Plant Phenotyping Laboratory.