Skip to main content
Chelsea Chen, polymer physicist at ORNL, stands in front of an eight-channel potentiostat and temperature chamber used for battery and electrochemical testing. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Chelsea Chen, a polymer physicist at ORNL, is studying ion transport in solid electrolytes that could help electric vehicle battery charges last longer.

Iridium-192 will be irradiated in the High Flux Isotope Reactor at ORNL before being sent to QSA Global for processing.

A key industrial isotope, iridium-192, has not been produced in the U.S. in almost 20 years. DOE's Isotope Program and QSA Global Inc. announced a joint product development agreement to initiate U.S. production of iridium-192. 

This CyberShake Study 22.12 seismic hazard model shows the Southern California regions (in reds and yellows) expected to experience strong ground motions at least once in the next 2,500 years. Image Credit: Statewide California Earthquake Center (SCEC).

Researchers at the Statewide California Earthquake Center are unraveling the mysteries of earthquakes by using physics-based computational models running on high-performance computing systems at ORNL. The team’s findings will provide a better understanding of seismic hazards in the Golden State. 

ORNL’s Tomás Rush examines a culture as part of his research into the plant-fungus relationship that can help or hinder ecosystem health. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

New computational framework speeds discovery of fungal metabolites, key to plant health and used in drug therapies and for other uses. 
 

Researchers at Corning have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

Corning uses neutron scattering to study the stability of different types of glass. Recently, researchers for the company have found that understanding the stability of the rings of atoms in glass materials can help predict the performance of glass products.

Caption: Jaswinder Sharma makes battery coin cells with a lightweight current collector made of thin layers of aligned carbon fibers in a polymer with carbon nanotubes. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Electric vehicles can drive longer distances if their lithium-ion batteries deliver more energy in a lighter package. A prime weight-loss candidate is the current collector, a component that often adds 10% to the weight of a battery cell without contributing energy.

Symposium guests view posters in the poster competition. Credit: Laetitia Delmau/ORNL, U.S. Dept. of Energy

The 21st Symposium on Separation Science and Technology for Energy Applications, Oct. 23-26 at the Embassy Suites by Hilton West in Knoxville, attracted 109 researchers, including some from Austria and the Czech Republic. Besides attending many technical sessions, they had the opportunity to tour the Graphite Reactor, High Flux Isotope Reactor and both supercomputers at ORNL.

The Department of Energy’s latest Fuel Economy Guide includes 2024 model vehicle fuel efficiency data compiled by ORNL researchers, as well as a tool for mapping the most economical driving route. Credit: ORNL/U.S. Dept. of Energy

Oak Ridge National Laboratory researchers have identified the most energy-efficient 2024 model year vehicles available in the United States, including electric and hybrids, in the latest edition of the Department of Energy’s Fuel Economy Guide.

The illustration depicts ocean surface currents simulated by MPAS-Ocean. Credit: Los Alamos National Laboratory, E3SM, U.S. Dept. of Energy

A team from DOE’s Oak Ridge, Los Alamos and Sandia National Laboratories has developed a new solver algorithm that reduces the total run time of the Model for Prediction Across Scales-Ocean, or MPAS-Ocean, E3SM’s ocean circulation model, by 45%. 

Wire arc additive manufacturing allowed this robot arm at ORNL to transform metal wire into a complete steam turbine blade like those used in power plants. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers at ORNL became the first to 3D-print large rotating steam turbine blades for generating energy in power plants.