Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 17 Results

Smart Neighborhood homes

To better determine the potential energy cost savings among connected homes, researchers at Oak Ridge National Laboratory developed a computer simulation to more accurately compare energy use on similar weather days.

CellSight allows for rapid mass spectrometry of individual cells. Credit: John Cahill, Oak Ridge National Laboratory/U.S. Dept of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory have received five 2019 R&D 100 Awards, increasing the lab’s total to 221 since the award’s inception in 1963.

Batteries—Polymers that bind

A team of researchers at Oak Ridge National Laboratory have demonstrated that designed synthetic polymers can serve as a high-performance binding material for next-generation lithium-ion batteries.

Low-cost, compact, printed sensor that can collect and transmit data on electrical appliances for better load monitoring

Scientists at Oak Ridge National Laboratory have developed a low-cost, printed, flexible sensor that can wrap around power cables to precisely monitor electrical loads from household appliances to support grid operations.

 

To develop complex materials with superior properties, Vera Bocharova uses diverse methods including broadband dielectric spectroscopy. Credit: Oak Ridge National Laboratory, U.S. Dept. of Energy; photographer Jason Richards

Vera Bocharova at the Department of Energy’s Oak Ridge National Laboratory investigates the structure and dynamics of soft materials—polymer nanocomposites, polymer electrolytes and biological macromolecules—to advance materials and technologies for energy, medicine and other applications.

ORNL alanine_graphic.jpg

OAK RIDGE, Tenn., Jan. 31, 2019—A new electron microscopy technique that detects the subtle changes in the weight of proteins at the nanoscale—while keeping the sample intact—could open a new pathway for deeper, more comprehensive studies of the basic building blocks of life. 

From left, Amit Naskar, Ngoc Nguyen and Christopher Bowland in ORNL’s Carbon and Composites Group bring a new capability—structural health monitoring—to strong, lightweight materials promising for transportation applications.

Carbon fiber composites—lightweight and strong—are great structural materials for automobiles, aircraft and other transportation vehicles. They consist of a polymer matrix, such as epoxy, into which reinforcing carbon fibers have been embedded. Because of differences in the mecha...

L-R, Researchers Nils Stenvig, Isabelle Snyder and Travis Smith are developing tools and deploying sensors to aid decision-making as Puerto Rico rebuilds and modernizes its power grid.

As Puerto Rico works to restore and modernize its power grid after last year’s devastating hurricane season, researchers at Oak Ridge National Laboratory have stepped up to provide unique analysis, sensing and modeling tools to better inform decisions.

Physics_silicon-detectors.jpg

Physicists turned to the “doubly magic” tin isotope Sn-132, colliding it with a target at Oak Ridge National Laboratory to assess its properties as it lost a neutron to become Sn-131.

hvac_grid03.png

Oak Ridge National Laboratory scientists have devised a method to control the heating and cooling systems of a large network of buildings for power grid stability—all while ensuring the comfort of occupants.