Skip to main content
3D supernova simulations

As a result of largescale 3D supernova simulations conducted on the Oak Ridge Leadership Computing Facility’s Summit supercomputer by researchers from the University of Tennessee and Oak Ridge National Laboratory, astrophysicists now have the most complete picture yet of what gravitational waves from exploding stars look like. 

CFM’s RISE open fan engine architecture. Image: GE Aerospace

To support the development of a revolutionary new open fan engine architecture for the future of flight, GE Aerospace has run simulations using the world’s fastest supercomputer capable of crunching data in excess of exascale speed, or more than a quintillion calculations per second.

Simulations performed on Oak Ridge National Laboratory’s Summit supercomputer generated one of the most detailed portraits to date of how turbulence disperses heat through ocean water under realistic conditions. Credit: Miles Couchman

Simulations performed on the Summit supercomputer at ORNL revealed new insights into the role of turbulence in mixing fluids and could open new possibilities for projecting climate change and studying fluid dynamics.

Exascale Computing Project

Lawrence Livermore National Laboratory’s Lori Diachin will take over as director of the Department of Energy’s Exascale Computing Project on June 1, guiding the successful, multi-institutional high-performance computing effort through its final stages.

Ashley Barker. Credit: Carlos Jones/ORNL

At the National Center for Computational Sciences, Ashley Barker enjoys one of the least complicated–sounding job titles at ORNL: section head of operations. But within that seemingly ordinary designation lurks a multitude of demanding roles as she oversees the complete user experience for NCCS computer systems.

This image depicts a visualization of an outflow of galactic wind at a single point in time using Cholla. Credit: Evan Schneider/University of Pittsburgh

A trio of new and improved cosmological simulation codes was unveiled in a series of presentations at the annual April Meeting of the American Physical Society in Minneapolis.

Artificial intelligence is becoming an increasingly valuable tool for ORNL researchers tackling the many mysteries of cancer. Credit: Getty Images.

A team of researchers from ORNL was recognized by the National Cancer Institute in March for their unique contributions in the fight against cancer.

Michael Parks

ORNL has named Michael Parks director of the Computer Science and Mathematics Division within ORNL’s Computing and Computational Sciences Directorate. His hiring became effective March 13.

Michelle Kidder received the lab’s Director’s Award for Outstanding Individual Accomplishment in Science and Technology for her decades-long work mentoring students, teachers and early-career staff. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Laboratory Director Thomas Zacharia presented five Director’s Awards during Saturday night's annual Awards Night event hosted by UT-Battelle, which manages ORNL for the Department of Energy.

Shown here is the structure of the NEMO protein. A team from ORNL conducted extensive molecular dynamics work on Summit by using both quantum mechanics and machine-learning methods to look at the binding affinity of NEMO and 3CLpro in humans and other species and to consider the structural models derived from the sequences of other coronaviruses. Image courtesy Nature Communications, Dan Jacobson/ORNL.

A new paper published in Nature Communications adds further evidence to the bradykinin storm theory of COVID-19’s viral pathogenesis — a theory that was posited two years ago by a team of researchers at the Department of Energy’s Oak Ridge National Laboratory.