Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.

1 - 10 of 61 Results

self-healing elastomers
Researchers at Oak Ridge National Laboratory developed self-healing elastomers that demonstrated unprecedented adhesion strength and the ability to adhere to many surfaces, which could broaden their potential use
An international research team used scanning tunneling microscopy at ORNL to send and receive single molecules across a surface on an atomically precise track. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences contributed to a groundbreaking experiment published in Science that tracks the real-time transport of individual molecules.

The 2021 Fuel Economy Guide, compiled by ORNL researchers, provides tips for keeping fuel costs down and helps consumers find the most fuel-efficient vehicle. Credit: ORNL/U.S. Dept. of Energy

Fuel economy can take a tumble when temperatures plummet, according to the Department of Energy’s 2021 Fuel Economy Guide. Compiled by researchers at Oak Ridge National Laboratory, the guide includes several tips to improve a vehicle’s fuel performance.

Drawing of air taxi

If air taxis become a viable mode of transportation, Oak Ridge National Laboratory researchers have estimated they could reduce fuel consumption significantly while alleviating traffic congestion.

UTK researchers used neutron probes at ORNL to confirm established fundamental chemical rules can also help understand and predict atomic movements and distortions in materials when disorder is introduced, as arrows show. Credit: Eric O’Quinn/UTK

Pauling’s Rules is the standard model used to describe atomic arrangements in ordered materials. Neutron scattering experiments at Oak Ridge National Laboratory confirmed this approach can also be used to describe highly disordered materials.

ORNL assisted in investigating proteins called porins, one shown in red, which are found in the protective outer membrane of certain disease-causing bacteria and tether the membrane to the cell wall. Credit: Hyea (Sunny) Hwang/Georgia Tech and ORNL, U.S. Dept. of Energy

Scientists from Oak Ridge National Laboratory used high-performance computing to create protein models that helped reveal how the outer membrane is tethered to the cell membrane in certain bacteria.

Shown here is an on-chip carbonized electrode microstructure from a scanning electron microscope. Credit: ORNL, U.S. Dept. of Energy

Scientists at Oak Ridge National Laboratory and the University of Tennessee designed and demonstrated a method to make carbon-based materials that can be used as electrodes compatible with a specific semiconductor circuitry.

Simulation of short polymer chains

Oak Ridge National Laboratory scientists have discovered a cost-effective way to significantly improve the mechanical performance of common polymer nanocomposite materials.

Drawing of skyrmions spins

Scientists discovered a strategy for layering dissimilar crystals with atomic precision to control the size of resulting magnetic quasi-particles called skyrmions.

3D printed EMPOWER wall drawing

Oak Ridge National Laboratory researchers used additive manufacturing to build a first-of-its kind smart wall called EMPOWER.