Skip to main content
This illustration demonstrates how atomic configurations with an equiatomic concentration of niobium (Nb), tantalum (Ta) and vanadium (V) can become disordered. The AI model helps researchers identify potential atomic configurations that can be used as shielding for housing fusion applications in a nuclear reactor. Credit: Massimiliano Lupo Pasini/ORNL, U.S. Dept. of Energy

A study led by the Department of Energy’s Oak Ridge National Laboratory details how artificial intelligence researchers created an AI model to help identify new alloys used as shielding for housing fusion applications components in a nuclear reactor. The findings mark a major step towards improving nuclear fusion facilities.

Through a new technical collaboration program, companies will be able to propose research projects that utilize the labs and expertise in ORNL’s Grid Research Integration and Deployment Center. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A new technical collaboration program at the Department of Energy’s Oak Ridge National Laboratory will help businesses develop and launch electric grid innovations. Sponsored by the Transformer Resilience and Advanced Components program in DOE’s Office of Electricity, the initiative will provide companies with access to national laboratory resources, enabling them to capture market opportunities. 

Takeshi Egami stands at his workstation at ORNL’s Spallation Neutron Source where he used novel experimental methods to propose the density wave theory. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Distinguished materials scientist Takeshi Egami has spent his career revealing the complex atomic structure of metallic glass and other liquids — sometimes sharing theories with initially resistant minds in the scientific community. 

Matthew Loyd

ORNL’s Matthew Loyd will receive a Department of Energy Office of Science Early Career Research award. 

VENUS, slated for user beamtime next fall, dons ORNL green to symbolize involvement from scientists and researchers across ORNL.

DOE commissioned a neutron imaging instrument, VENUS, at the Spallation Neutron Source in July. VENUS instrument scientists will use AI to deliver 3D models to researchers in half the time it typically takes. 

Debjani Singh

Debjani Singh, a senior scientist at ORNL, leads the HydroSource project, which enhances hydropower research by making water data more accessible and useful. With a background in water resources, data science, and earth science, Singh applies innovative tools like AI to advance research. Her career, shaped by her early exposure to science in India, focuses on bridging research with practical applications.

This photo is of four men standing in front of a wall of monitors that are showing a tree looking image.

To better predict long-term flooding risk, scientists at the Department of Energy’s Oak Ridge National Laboratory developed a 3D modeling framework that captures the complex dynamics of water as it flows across the landscape. The framework seeks to provide valuable insights into which communities are most vulnerable as the climate changes, and was developed for a project that’s assessing climate risk and mitigation pathways for an urban area along the Southeast Texas coast.

Caption: The Na-CO2 battery developed at ORNL, consisting of two electrodes in a saltwater solution, pulls atmospheric carbon dioxide into its electrochemical reaction, and releases only valuable biproducts. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide. 

Jens Dilling has been named associate laboratory director for the Neutron Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory, effective April 1.

Jens Dilling has been named associate laboratory director for the Neutron Sciences Directorate at the Department of Energy’s Oak Ridge National Laboratory, effective April 1.

ORNL engineer Canan Karakaya uses computational modeling to design and improve chemical reactors and how they are operated to convert methane, carbon dioxide, ammonia or ethanol into higher-value chemicals or energy-dense fuels. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Canan Karakaya, a R&D Staff member in the Chemical Process Scale-Up group at ORNL, was inspired to become a chemical engineer after she experienced a magical transformation that turned ammonia gas into ammonium nitrate, turning a liquid into white flakes gently floating through the air.