Skip to main content
Weyl semimetal

At ORNL, a group of scientists used neutron scattering techniques to investigate a relatively new functional material called a Weyl semimetal. These Weyl fermions move very quickly in a material and can carry electrical charge at room temperature. Scientists think that Weyl semimetals, if used in future electronics, could allow electricity to flow more efficiently and enable more energy-efficient computers and other electronic devices.

Dmytro Bykov, left, and Hector Corzo participate in a value proposition development exercise as part Energy I-Corps

Two ORNL teams recently completed Cohort 18 of Energy I-Corps, an immersive two-month training program where the scientists define their technology’s value propositions, conduct stakeholder discovery interviews and develop viable market pathways.

Researcher Brittany Rodriguez works with an ORNL-developed Additive Manufacturing/Compression Molding system that 3D prints large-scale, high-volume parts made from lightweight composites. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Brittany Rodriguez never imagined she would pursue a science career at a Department of Energy national laboratory. However, after some encouraging words from her mother, input from key mentors at the University of Texas Rio Grande Valley, or UTRGV, and a lot of hard work, Rodriguez landed at DOE’s Manufacturing Demonstration Facility, or MDF, at Oak Ridge National Laboratory.

Honors & Awards in white with a green background with an oak leaf underneath

ORNL's Guang Yang and Andrew Westover have been selected to join the first cohort of DOE’s Advanced Research Projects Agency-Energy Inspiring Generations of New Innovators to Impact Technologies in Energy 2024 program. The program supports early career scientists and engineers in their work to convert disruptive ideas into impactful energy technologies. 

Rectangular box being lifted by a red pully system up the left side of the building

Researchers at ORNL and the University of Maine have designed and 3D-printed a single-piece, recyclable natural-material floor panel tested to be strong enough to replace construction materials like steel. 

Man in a beard holding tweezers, showing a bead if space glass closer to the screen.

Researchers set a new benchmark for future experiments making materials in space rather than for space. They discovered that many kinds of glass have similar atomic structure and arrangements and can successfully be made in space. Scientists from nine institutions in government, academia and industry participated in this 5-year study. 

ORNL researcher Louise Evans is working to ensure safeguards approaches and verification technologies are integrated early in the design process of advanced reactor technologies. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers tackling national security challenges at ORNL are upholding an 80-year legacy of leadership in all things nuclear. Today, they’re developing the next generation of technologies that will help reduce global nuclear risk and enable safe, secure, peaceful use of nuclear materials, worldwide.

The transportation and industrial sectors together account for more than 50% of the country’s carbon footprint. Defossilization could help reduce new emissions from these and other difficult-to-electrify segments of the U.S. economy.

Scientists at Oak Ridge National Laboratory and six other Department of Energy national laboratories have developed a United States-based perspective for achieving net-zero carbon emissions. 

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

ORNL’s Erin Webb is co-leading a new Circular Bioeconomy Systems Convergent Research Initiative focused on advancing production and use of renewable carbon from Tennessee to meet societal needs. 

Shift Thermal co-founders Mitchell Ishamel, left, and Levon Atoyan stand in front of one of the company’s ice thermal energy storage modules, which will be submitted to independent measurement and validation testing in May. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Shift Thermal, a member of Innovation Crossroads’ first cohort of fellows, is commercializing advanced ice thermal energy storage for HVAC, shifting the cooling process to be more sustainable, cost-effective and resilient. Shift Thermal wants to enable a lower-cost, more-efficient thermal energy storage method to provide long-duration resilient cooling when the electric grid is down.