Skip to main content
Symposium guests view posters in the poster competition. Credit: Laetitia Delmau/ORNL, U.S. Dept. of Energy

The 21st Symposium on Separation Science and Technology for Energy Applications, Oct. 23-26 at the Embassy Suites by Hilton West in Knoxville, attracted 109 researchers, including some from Austria and the Czech Republic. Besides attending many technical sessions, they had the opportunity to tour the Graphite Reactor, High Flux Isotope Reactor and both supercomputers at ORNL.

Naval Academy midshipmen look at tiny particle fuels while touring ORNL. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

Nuclear engineering students from the United States Military Academy and United States Naval Academy are working with researchers at ORNL to complete design concepts for a nuclear propulsion rocket to go to space in 2027 as part of the Defense Advanced Research Projects Agency DRACO program.

A Univ. of Michigan-led team used Frontier, the world’s first exascale supercomputer, to simulate a system of nearly 75,000 magnesium atoms at near-quantum accuracy. Credit: SC23

 

A team of eight scientists won the Association for Computing Machinery’s 2023 Gordon Bell Prize for their study that used the world’s first exascale supercomputer to run one of the largest simulations of an alloy ever and achieve near-quantum accuracy.

Sangkeun “Matt” Lee received the Best Poster Award at the Institute of Electrical and Electronics Engineers 24th International Conference on Information Reuse and Integration.

Lee's paper at the August conference in Bellevue, Washington, combined weather and power outage data for three states – Texas, Michigan and Hawaii –  and used a machine learning model to predict how extreme weather such as thunderstorms, floods and tornadoes would affect local power grids and to estimate the risk for outages. The paper relied on data from the National Weather Service and the U.S. Department of Energy’s Environment for Analysis of Geo-Located Energy Information, or EAGLE-I, database.

ORNL researchers are establishing a digital thread of data, algorithms and workflows to produce a continuously updated model of earth systems.

Digital twins are exactly what they sound like: virtual models of physical reality that continuously update to reflect changes in the real world.

 

Seeing the difference Ac-225 could make to cancer patients made Raina Setzer want to come to ORNL to directly work with the isotope. Credit: Allison Peacock/ORNL, U.S. Dept. of Energy

Raina Setzer knows the work she does matters. That’s because she’s already seen it from the other side. Setzer, a radiochemical processing technician in Oak Ridge National Laboratory’s Isotope Processing and Manufacturing Division, joined the lab in June 2023.

text

Waiting for answers surrounding a healthcare condition can be as stressful as the condition itself. Maria Mahbub, a research collaborator at Oak Ridge National Laboratory, is developing technology that could help providers and patients get answers sooner.

Group image

In response to a renewed international interest in molten salt reactors, researchers from the Department of Energy’s Oak Ridge National Laboratory have developed a novel technique to visualize molten salt intrusion in graphite.

red and green sphagnum moss

A type of peat moss has surprised scientists with its climate resilience: Sphagnum divinum is actively speciating in response to hot, dry conditions. 

The sun sets behind the ORNL Visitor Center in this aerial photo from April 2023. Credit: Kase Clapp/ORNL, U.S. Dept. of Energy

In fiscal year 2023 — Oct. 1–Sept. 30, 2023 — Oak Ridge National Laboratory was awarded more than $8 million in technology maturation funding through the Department of Energy’s Technology Commercialization Fund, or TCF.