Skip to main content
Group of young kids sitting at a lab table.

A group at the Department of Energy's Oak Ridge National Laboratory made a difference for local youth through hands-on projects that connected neutron science and engineering intuitively.

Cody Lloyd stands in front of images of historical nuclear field testing. The green and red dots are the machine learning algorithm recognizing features in the image. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Cody Lloyd became a nuclear engineer because of his interest in the Manhattan Project, the United States’ mission to advance nuclear science to end World War II. As a research associate in nuclear forensics at ORNL, Lloyd now teaches computers to interpret data from imagery of nuclear weapons tests from the 1950s and early 1960s, bringing his childhood fascination into his career

Credit: NAIC Arecibo Observatory, a facility of the NSF; (INSET) Michelle Negron, National Science Foundation

For more than half a century, the 1,000-foot-diameter spherical reflector dish at the Arecibo Observatory in Puerto Rico was the largest radio telescope in the world. Completed in 1963, the dish was built in a natural sinkhole, with the telescope’s feed antenna suspended 500 feet above the dish on a 1.8-million-pound steel platform. Three concrete towers and more than 4 miles of steel cables supported the platform.

Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

After completing a bachelor’s degree in biology, Toya Beiswenger didn’t intend to go into forensics. But almost two decades later, the nuclear security scientist at ORNL has found a way to appreciate the art of nuclear forensics.

Two researchers standing back to back in a grassy area

When geoinformatics engineering researchers at the Department of Energy’s Oak Ridge National Laboratory wanted to better understand changes in land areas and points of interest around the world, they turned to the locals — their data, at least.

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

Researchers at the Department of Energy’s Oak Ridge National Laboratory were the first to use neutron reflectometry to peer inside a working solid-state battery and monitor its electrochemistry.

Tristen Mullins. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Tristen Mullins enjoys the hidden side of computers. As a signals processing engineer for ORNL, she tries to uncover information hidden in components used on the nation’s power grid — information that may be susceptible to cyberattacks.

Herwig shared the impacts of neutron science with Secretary of Energy Jennifer Granholm during a tour of SNS in November 2021. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Ken Herwig's scientific drive crystallized in his youth when he solved a tough algebra word problem in his head while tossing newspapers from his bicycle. He said the joy he felt in that moment as a teenager fueled his determination to conquer mathematical mysteries. And he did.

ORNL’s Yun Liu stands before one of the 10 laser comb-based beam diagnostics stations at the Spallation Neutron Source. The laser comb solves the longstanding problem of measuring changes in the beam across time. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

When opportunity meets talent, great things happen. The laser comb developed at ORNL serves as such an example.

Image of outerspace

Few things carry the same aura of mystery as dark matter. The name itself radiates secrecy, suggesting something hidden in the shadows of the Universe.