Skip to main content
This illustration demonstrates how atomic configurations with an equiatomic concentration of niobium (Nb), tantalum (Ta) and vanadium (V) can become disordered. The AI model helps researchers identify potential atomic configurations that can be used as shielding for housing fusion applications in a nuclear reactor. Credit: Massimiliano Lupo Pasini/ORNL, U.S. Dept. of Energy

A study led by the Department of Energy’s Oak Ridge National Laboratory details how artificial intelligence researchers created an AI model to help identify new alloys used as shielding for housing fusion applications components in a nuclear reactor. The findings mark a major step towards improving nuclear fusion facilities.

Through a new technical collaboration program, companies will be able to propose research projects that utilize the labs and expertise in ORNL’s Grid Research Integration and Deployment Center. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

A new technical collaboration program at the Department of Energy’s Oak Ridge National Laboratory will help businesses develop and launch electric grid innovations. Sponsored by the Transformer Resilience and Advanced Components program in DOE’s Office of Electricity, the initiative will provide companies with access to national laboratory resources, enabling them to capture market opportunities. 

ORNL researchers demonstrated the use of drones equipped with cameras and other sensors to check power lines at an EPB of Chattanooga training center for electrical line workers.

Researchers at ORNL recently demonstrated an automated drone-inspection technology at EPB of Chattanooga that will allow utilities to more quickly and easily check remote power lines for malfunctions, catching problems before outages occur.

This photo is of a male scientist sitting at a desk working with materials, wearing protective glasses.

Researchers at the Department of Energy’s Oak Ridge National Laboratory and partner institutions have launched a project to develop an innovative suite of tools that will employ machine learning algorithms for more effective cybersecurity analysis of the U.S. power grid. 

ORNL researchers Phani Marthi and Suman Debnath work on developing and scaling up new EMT simulation software to analyze how power electronics in the electric grid will respond to brief interruptions in power flow. Credit: Genevieve Martin/ORNL, U.S. Dept. of Energy

Power companies and electric grid developers turn to simulation tools as they attempt to understand how modern equipment will be affected by rapidly unfolding events in a complex grid. 

Rectangular box being lifted by a red pully system up the left side of the building

Researchers at ORNL and the University of Maine have designed and 3D-printed a single-piece, recyclable natural-material floor panel tested to be strong enough to replace construction materials like steel. 

Man in a beard holding tweezers, showing a bead if space glass closer to the screen.

Researchers set a new benchmark for future experiments making materials in space rather than for space. They discovered that many kinds of glass have similar atomic structure and arrangements and can successfully be made in space. Scientists from nine institutions in government, academia and industry participated in this 5-year study. 

ORNL researcher Louise Evans is working to ensure safeguards approaches and verification technologies are integrated early in the design process of advanced reactor technologies. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Researchers tackling national security challenges at ORNL are upholding an 80-year legacy of leadership in all things nuclear. Today, they’re developing the next generation of technologies that will help reduce global nuclear risk and enable safe, secure, peaceful use of nuclear materials, worldwide.

Caption: The Na-CO2 battery developed at ORNL, consisting of two electrodes in a saltwater solution, pulls atmospheric carbon dioxide into its electrochemical reaction, and releases only valuable biproducts. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

Researchers at ORNL are developing battery technologies to fight climate change in two ways, by expanding the use of renewable energy and capturing airborne carbon dioxide. 

ORNL researchers have teamed up with other national labs to develop a free platform called Open Energy Data Initiative Solar Systems Integration Data and Modeling to better analyze the behavior of electric grids incorporating many solar projects. Credit: Andy Sproles/ORNL, U.S. Dept. of Energy

ORNL researchers have teamed up with other national labs to develop a free platform called Open Energy Data Initiative Solar Systems Integration Data and Modeling to better analyze the behavior of electric grids incorporating many solar projects.