Skip to main content
A small droplet of water is suspended in midair via an electrostatic levitator that lifts charged particles using an electric field that counteracts gravity. Credit: Iowa State University/ORNL, U.S. Dept. of Energy

How do you get water to float in midair? With a WAND2, of course. But it’s hardly magic. In fact, it’s a scientific device used by scientists to study matter.

ORNL researchers Lu Yu and Yaocai Bai examine vials that contain a chemical solution that causes the cobalt and lithium to separate from a spent battery, followed by a second stage when cobalt precipitates in the bottom. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Used lithium-ion batteries from cell phones, laptops and a growing number of electric vehicles are piling up, but options for recycling them remain limited mostly to burning or chemically dissolving shredded batteries.

Scientists at Oak Ridge National Laboratory contributed to several chapters of the Fifth National Climate Assessment, providing expertise in complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling. Credit: ORNL, U.S. Dept. of Energy

Scientists at ORNL used their knowledge of complex ecosystem processes, energy systems, human dynamics, computational science and Earth-scale modeling to inform the nation’s latest National Climate Assessment, which draws attention to vulnerabilities and resilience opportunities in every region of the country.

Frontier’s exascale power enables the Energy, Exascale and Earth System Model-Multiscale Modeling Framework — or E3SM-MMF — project to run years’ worth of climate simulations at unprecedented speed and scale. Credit: Mark Taylor/Sandia National Laboratories, U.S. Dept. of Energy

The world’s first exascale supercomputer will help scientists peer into the future of global climate change and open a window into weather patterns that could affect the world a generation from now.

Logo that reads U.S. Department of Energy INCITE Leadership Computing

The Department of Energy’s Office of Science has allocated supercomputer access to a record-breaking 75 computational science projects for 2024 through its Innovative and Novel Computational Impact on Theory and Experiment, or INCITE, program. DOE is awarding 60% of the available time on the leadership-class supercomputers at DOE’s Argonne and Oak Ridge National Laboratories to accelerate discovery and innovation. 

ORNL scientists developed a method that improves the accuracy of the CRISPR Cas9 gene editing tool used to modify microbes for renewable fuels and chemicals production. This research draws on the lab’s expertise in quantum biology, artificial intelligence and synthetic biology. Credit: Philip Gray/ORNL, U.S. Dept. of Energy

Scientists at ORNL used their expertise in quantum biology, artificial intelligence and bioengineering to improve how CRISPR Cas9 genome editing tools work on organisms like microbes that can be modified to produce renewable fuels and chemicals.

Seeing the difference Ac-225 could make to cancer patients made Raina Setzer want to come to ORNL to directly work with the isotope. Credit: Allison Peacock/ORNL, U.S. Dept. of Energy

Raina Setzer knows the work she does matters. That’s because she’s already seen it from the other side. Setzer, a radiochemical processing technician in Oak Ridge National Laboratory’s Isotope Processing and Manufacturing Division, joined the lab in June 2023.

Oak Ridge National Laboratory researchers took a connected and automated vehicle out of the virtual proving ground and onto a public road to determine energy savings when it is operated under predictive control strategies. Credit: ORNL, U.S. Dept. of Energy

ORNL researchers  determined that a connected and automated vehicle, or CAV, traveling on a multilane highway with integrated traffic light timing control can maximize energy efficiency and achieve up to 27% savings.

Researchers have shown how an all-solid lithium-based electrolyte material can be used to develop fast charging, long-range batteries for electric vehicles that are also safer than conventional designs. Credit: ORNL, U.S. Dept. of Energy

Currently, the biggest hurdle for electric vehicles, or EVs, is the development of advanced battery technology to extend driving range, safety and reliability.

Sam Hollifield displays a prototype of the Secure Hijack, Intrusion and Exploit Layered Detector, or SHIELD, the device monitoring the cybersecurity of the semi-truck. Credit: Lena Shoemaker/ORNL, U.S. Dept. of Energy

As vehicles gain technological capabilities, car manufacturers are using an increasing number of computers and sensors to improve situational awareness and enhance the driving experience.