Skip to main content

All News

ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to

1 - 10 of 12 Results

Kashif Nawaz, researcher and group leader for multifunctional equipment integration in buildings technologies, is developing a platform for the direct air capture of carbon dioxide that can be retrofitted to existing rooftop heating, ventilation and air conditioning units.  Credit: ORNL/U.S. Dept. of Energy

When Kashif Nawaz looks at a satellite map of the U.S., he sees millions of buildings that could hold a potential solution for the capture of carbon dioxide, a plentiful gas that can be harmful when excessive amounts are released into the atmosphere, raising the Earth’s temperature.

Data from the ORNL Free Air CO2 Enrichment experiment were combined with observations from more than 100 other FACE sites for this analysis, which revealed new insights about the relationship between plant biomass growth and soil carbon storage. Credit: Jeff Warren/ORNL, U.S. Dept. of Energy

Oak Ridge National Laboratory was among an international team, led by Lawrence Livermore National Laboratory, who synthesized 108 elevated carbon dioxide, or CO2, experiments performed in various ecosystems to find out how much carbon is absorbed by plants and soil.

Data from the GEDI instrument on the International Space Station can help answer questions about Earth’s biomes and ecosystem impacts on the carbon cycle and climate. Credit: NASA

New data distributed through NASA’s Oak Ridge National Laboratory Distributed Active Archive Center, or ORNL DAAC, provide an unprecedented picture of plants’ carbon storage capacity around the globe.

Researchers at ORNL and the University of Tennessee developed an automated workflow that combines chemical robotics and machine learning to speed the search for stable perovskites. Credit: Jaimee Janiga/ORNL, U.S. Dept of Energy

Researchers at the Department of Energy’s Oak Ridge National Laboratory and the University of Tennessee are automating the search for new materials to advance solar energy technologies.

Each point on the sphere of this visual representation of arbitrary frequency-bin qubit states corresponds to a unique quantum state, and the gray sections represent the measurement results. The zoomed-in view illustrates examples of three quantum states plotted next to their ideal targets (blue dots). Credit: Joseph Lukens/ORNL, U.S. Dept. of Energy

A team of researchers at Oak Ridge National Laboratory and Purdue University has taken an important step toward this goal by harnessing the frequency, or color, of light. Such capabilities could contribute to more practical and large-scale quantum networks exponentially more powerful and secure than the classical networks we have today.

Verónica Melesse Vergara speaks with third and fourth graders at East Side Intermediate School in Brownsville. Credit: ORNL, U.S. Dept. of Energy

Twenty-seven ORNL researchers Zoomed into 11 middle schools across Tennessee during the annual Engineers Week in February. East Tennessee schools throughout Oak Ridge and Roane, Sevier, Blount and Loudon counties participated, with three West Tennessee schools joining in.

ORNL’s Cory Stuart is head of data systems and cybersecurity for the DOE Atmospheric Radiation Measurement user facility. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

Cory Stuart of ORNL applies his expertise as a systems engineer to ensure the secure and timely transfer of millions of measurements of Earth’s atmosphere, fueling science around the world.

The ORNL National Center for Computational Sciences is now home two Hewlett Packard Enterprise, or HPE, Cray EX supercomputers that will provide the U.S. Army and Air Force with global and regional numerical weather model outputs for planning and executing missions worldwide. Credit: Jason Smith/ORNL, U.S. Dept. of Energy and HPE Cray

The U.S. Air Force and Oak Ridge National Laboratory launched a new high-performance weather forecasting computer system that will provide a platform for some of the most advanced weather modeling in the world.

The researchers embedded a programmable model into a D-Wave quantum computer chip. Credit: D-Wave

Since the 1930s, scientists have been using particle accelerators to gain insights into the structure of matter and the laws of physics that govern our world.

Oscar Martinez loads a special form capsule into the leak tester for a helium leak test in the packaging facility of the National Transportation Research Center. Credit: Jason Richards/ORNL, U.S. Dept. of Energy

As program manager for the Department of Energy’s Oak Ridge National Laboratory’s Package Testing Program, Oscar Martinez enjoys finding and fixing technical issues.