Skip to main content
This illustration demonstrates how atomic configurations with an equiatomic concentration of niobium (Nb), tantalum (Ta) and vanadium (V) can become disordered. The AI model helps researchers identify potential atomic configurations that can be used as shielding for housing fusion applications in a nuclear reactor. Credit: Massimiliano Lupo Pasini/ORNL, U.S. Dept. of Energy

A study led by the Department of Energy’s Oak Ridge National Laboratory details how artificial intelligence researchers created an AI model to help identify new alloys used as shielding for housing fusion applications components in a nuclear reactor. The findings mark a major step towards improving nuclear fusion facilities.

ORNL scientists used molecular dynamics simulations, exascale computing, lab testing and analysis to accelerate the development of an energy-saving method to produce nanocellulosic fibers.

A team led by scientists at ORNL identified and demonstrated a method to process a plant-based material called nanocellulose that reduced energy needs by a whopping 21%, using simulations on the lab’s supercomputers and follow-on analysis.

Jay Tiley inspects a hydroelectric runner from TVA’s Cherokee Dam

ORNL is working with industry partners to develop a technique that combines 3D printing and conventional machining to produce large metal parts for clean energy applications. The project, known as Rapid Research on Universal Near Net Shape Fabrication Strategies for Expedited Runner Systems, or Rapid RUNNERS, recently received $15 million in funding from DOE. 

Infuse logo

ORNL is the lead partner on five research collaborations with private fusion companies in the 2024 cohort of the Innovation Network for FUSion Energy, or INFUSE, program. These collaborative projects are intended to resolve technical hurdles and develop enabling technologies to accelerate fusion energy research in the private sector.

A portrait of John Sanseverino.

John joined the MPEX project in 2019 and has served as project manager for several organizations within ORNL.

Chuck Greenfield, former assistant director of the DII-D National Fusion Program at General Atomics, has joined ORNL as ITER R&D Lead.

Chuck Greenfield, former assistant director of the DIII-D National Fusion Program at General Atomics, has joined ORNL as ITER R&D Lead. 
 

2023 Battelle Distinguished Inventors

Four scientists affiliated with ORNL were named Battelle Distinguished Inventors during the lab’s annual Innovation Awards on Dec. 1 in recognition of being granted 14 or more United States patents.

Oak Ridge National Laboratory entrance sign

The Department of Energy’s Office of Science has selected three ORNL research teams to receive funding through DOE’s new Biopreparedness Research Virtual Environment initiative.

ZEISS Head of Additive Manufacturing Technology Claus Hermannstaedter, left, and ORNL Interim Associate Laboratory Director for Energy Science and Technology Rick Raines sign a licensing agreement that allows ORNL’s machine-learning algorithm, Simurgh, to be used for rapid evaluations of 3D-printed components with industrial X-ray computed tomography, or CT. Using machine learning in CT scanning is expected to reduce the time and cost of inspections of 3D-printed parts by more than ten times.

A licensing agreement between the Department of Energy’s Oak Ridge National Laboratory and research partner ZEISS will enable industrial X-ray computed tomography, or CT, to perform rapid evaluations of 3D-printed components using ORNL’s machine

The OpeN-AM experimental platform, installed at the VULCAN instrument, features a robotic arm that prints layers of molten metal to create complex shapes. Credit: Jill Hemman/ORNL, U.S Dept. of Energy

Technologies developed by researchers at ORNL have received six 2023 R&D 100 Awards.