Filter News
Area of Research
- (-) Supercomputing (38)
- Advanced Manufacturing (4)
- Biology and Environment (17)
- Computer Science (2)
- Energy Science (69)
- Energy Sciences (1)
- Fusion and Fission (5)
- Fusion Energy (5)
- Isotopes (4)
- Materials (50)
- Materials for Computing (5)
- National Security (12)
- Neutron Science (32)
- Nuclear Science and Technology (22)
- Nuclear Systems Modeling, Simulation and Validation (2)
- Quantum information Science (3)
News Topics
- 3-D Printing/Advanced Manufacturing (3)
- Artificial Intelligence (5)
- Big Data (8)
- Bioenergy (3)
- Biology (1)
- Biomedical (8)
- Chemical Sciences (1)
- Computer Science (29)
- Coronavirus (8)
- Cybersecurity (1)
- Energy Storage (1)
- Environment (4)
- Exascale Computing (2)
- Frontier (1)
- Fusion (1)
- Grid (2)
- High-Performance Computing (2)
- Isotopes (1)
- Machine Learning (4)
- Materials (2)
- Materials Science (7)
- Mathematics (1)
- Microscopy (2)
- Molten Salt (1)
- Nanotechnology (4)
- National Security (1)
- Neutron Science (8)
- Nuclear Energy (1)
- Physics (2)
- Polymers (1)
- Quantum Science (8)
- Summit (13)
- Transportation (2)
ORNL's Communications team works with news media seeking information about the laboratory. Media may use the resources listed below or send questions to news@ornl.gov.
31 - 38 of 38 Results

A novel approach developed by scientists at ORNL can scan massive datasets of large-scale satellite images to more accurately map infrastructure – such as buildings and roads – in hours versus days.

Oak Ridge National Laboratory will partner with Cincinnati Children’s Hospital Medical Center to explore ways to deploy expertise in health data science that could more quickly identify patients’ mental health risk factors and aid in

The prospect of simulating a fusion plasma is a step closer to reality thanks to a new computational tool developed by scientists in fusion physics, computer science and mathematics at ORNL.

An international team of researchers has discovered the hydrogen atoms in a metal hydride material are much more tightly spaced than had been predicted for decades — a feature that could possibly facilitate superconductivity at or near room temperature and pressure.

A team from the ORNL has conducted a series of experiments to gain a better understanding of quantum mechanics and pursue advances in quantum networking and quantum computing, which could lead to practical applications in cybersecurity and other areas.

Scientists at have experimentally demonstrated a novel cryogenic, or low temperature, memory cell circuit design based on coupled arrays of Josephson junctions, a technology that may be faster and more energy efficient than existing memory devices.

Researchers at ORNL have developed a quantum chemistry simulation benchmark to evaluate the performance of quantum devices and guide the development of applications for future quantum computers.

Researchers across the scientific spectrum crave data, as it is essential to understanding the natural world and, by extension, accelerating scientific progress.