Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
- (-) Information Technology Services Directorate (2)
Researcher
- Adam M Guss
- Rafal Wojda
- Prasad Kandula
- Josh Michener
- Vandana Rallabandi
- Xiaohan Yang
- Alex Plotkowski
- Alex Walters
- Andrzej Nycz
- Austin Carroll
- Carrie Eckert
- Christopher Fancher
- Clay Leach
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jason Jarnagin
- Jay D Huenemann
- Jeff Foster
- Joanna Tannous
- John F Cahill
- Kevin Spakes
- Kyle Davis
- Liangyu Qian
- Lilian V Swann
- Marcio Magri Kimpara
- Mark Provo II
- Mostak Mohammad
- Omer Onar
- Paul Abraham
- Praveen Kumar
- Rob Root
- Sam Hollifield
- Serena Chen
- Shajjad Chowdhury
- Subho Mukherjee
- Suman Debnath
- Udaya C Kalluri
- Vilmos Kertesz
- Vincent Paquit
- Yang Liu

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

By engineering the Serine Integrase Assisted Genome Engineering (SAGE) genetic toolkit in an industrial strain of Aspergillus niger, we have established its proof of principle for applicability in Eukaryotes.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

We present a comprehensive muti-technique approach for systematic investigation of enzymes generated by wastewater Comamonas species with hitherto unknown functionality to wards the depolymerization of plastics into bioaccessible products for bacterial metabolism.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology identifies enzymatic routes to synthesize amide oligomers with defined sequence to improve polymerization of existing materials or enable polymerization of new materials. Polymers are generally composed of one (e.g. Nylon 6) or two (e.g.

The technologies described provides for the upcycling of mixed plastics to muonic acid and 3-hydroxyacids.

This invention is for bacterial strains that can utilize lignocellulose sugars. This will improve the efficiency of bioproduct formation in these strains and reduce the greenhouse-gas emission of an industrial bi

An ORNL invention proposes using 3D printing to make conductors with space-filling thin-wall cross sections. Space-filling thin-wall profiles will maximize the conductor volume while restricting the path for eddy currents induction.