Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Information Technology Services Directorate (3)
Researcher
- Blane Fillingim
- Brian Post
- Lauren Heinrich
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Alexander I Wiechert
- Annetta Burger
- Carter Christopher
- Chance C Brown
- Costas Tsouris
- Dali Wang
- Debangshu Mukherjee
- Debraj De
- Gautam Malviya Thakur
- Gs Jung
- Gyoung Gug Jang
- James Gaboardi
- Jason Jarnagin
- Jesse McGaha
- Jian Chen
- Kevin Spakes
- Kevin Sparks
- Lilian V Swann
- Liz McBride
- Mark Provo II
- Md Inzamam Ul Haque
- Olga S Ovchinnikova
- Radu Custelcean
- Ramanan Sankaran
- Rob Root
- Sam Hollifield
- Todd Thomas
- Vimal Ramanuj
- Wei Zhang
- Wenjun Ge
- Xiuling Nie
- Zhili Feng

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This invention is directed to a machine leaning methodology to quantify the association of a set of input variables to a set of output variables, specifically for the one-to-many scenarios in which the output exhibits a range of variations under the same replicated input condi

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.