Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Joseph Chapman
- Nicholas Peters
- Singanallur Venkatakrishnan
- Amir K Ziabari
- Andrzej Nycz
- Chris Masuo
- Diana E Hun
- Hsuan-Hao Lu
- Joseph Lukens
- Luke Meyer
- Muneer Alshowkan
- Peter Wang
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- William Carter
- Alex Walters
- Anees Alnajjar
- Brian Williams
- Bruce Hannan
- Bryan Maldonado Puente
- Corey Cooke
- Gina Accawi
- Gurneesh Jatana
- Joshua Vaughan
- Loren L Funk
- Mariam Kiran
- Mark M Root
- Michael Kirka
- Nolan Hayes
- Obaid Rahman
- Polad Shikhaliev
- Ryan Kerekes
- Sally Ghanem
- Theodore Visscher
- Vladislav N Sedov
- Yacouba Diawara

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.