Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Andrzej Nycz
- Blane Fillingim
- Brian Post
- Chris Masuo
- Lauren Heinrich
- Luke Meyer
- Peeyush Nandwana
- Sergei V Kalinin
- Sudarsanam Babu
- Thomas Feldhausen
- William Carter
- Yousub Lee
- Alex Walters
- Anton Ievlev
- Bogdan Dryzhakov
- Bruce Hannan
- Joshua Vaughan
- Kevin M Roccapriore
- Liam Collins
- Loren L Funk
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Peter Wang
- Polad Shikhaliev
- Ramanan Sankaran
- Stephen Jesse
- Steven Randolph
- Theodore Visscher
- Vimal Ramanuj
- Vladislav N Sedov
- Wenjun Ge
- Yacouba Diawara
- Yongtao Liu

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.