Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Joseph Chapman
- Nicholas Peters
- Andrzej Nycz
- Chris Masuo
- Gurneesh Jatana
- Hsuan-Hao Lu
- Jonathan Willocks
- Joseph Lukens
- Luke Meyer
- Muneer Alshowkan
- Todd Toops
- William Carter
- Yeonshil Park
- Alexander I Wiechert
- Alexey Serov
- Alex Walters
- Anees Alnajjar
- Benjamin Manard
- Brian Williams
- Bruce Hannan
- Charles F Weber
- Costas Tsouris
- Dhruba Deka
- Diana E Hun
- Gina Accawi
- Haiying Chen
- James Szybist
- Joanna Mcfarlane
- Joshua Vaughan
- Loren L Funk
- Mariam Kiran
- Mark M Root
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Peter Wang
- Philip Boudreaux
- Polad Shikhaliev
- Singanallur Venkatakrishnan
- Sreshtha Sinha Majumdar
- Theodore Visscher
- Vandana Rallabandi
- Vladislav N Sedov
- William P Partridge Jr
- Xiang Lyu
- Yacouba Diawara

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.