Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Vivek Sujan
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Omer Onar
- Tomonori Saito
- Adam Siekmann
- Andrzej Nycz
- Chris Masuo
- Erdem Asa
- Ethan Self
- Jaswinder Sharma
- Luke Meyer
- Robert Sacci
- Sergiy Kalnaus
- Subho Mukherjee
- William Carter
- Alexey Serov
- Alex Walters
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Bruce Hannan
- Chanho Kim
- Felipe Polo Garzon
- Georgios Polyzos
- Hyeonsup Lim
- Ilias Belharouak
- Isabelle Snyder
- Joshua Vaughan
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Loren L Funk
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peng Yang
- Peter Wang
- Polad Shikhaliev
- Sai Krishna Reddy Adapa
- Shajjad Chowdhury
- Theodore Visscher
- Vera Bocharova
- Vladislav N Sedov
- Xiang Lyu
- Yacouba Diawara

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.