Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Amit K Naskar
- Sam Hollifield
- Andrzej Nycz
- Chad Steed
- Chris Masuo
- Jaswinder Sharma
- Junghoon Chae
- Logan Kearney
- Luke Meyer
- Michael Toomey
- Mingyan Li
- Nihal Kanbargi
- Travis Humble
- William Carter
- Aaron Werth
- Alex Walters
- Ali Passian
- Arit Das
- Benjamin L Doughty
- Brian Weber
- Bruce Hannan
- Christopher Bowland
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Harper Jordan
- Holly Humphrey
- Isaac Sikkema
- Jason Jarnagin
- Joel Asiamah
- Joel Dawson
- Joseph Olatt
- Joshua Vaughan
- Kevin Spakes
- Kunal Mondal
- Lilian V Swann
- Loren L Funk
- Luke Koch
- Mahim Mathur
- Mark Provo II
- Mary A Adkisson
- Nance Ericson
- Oscar Martinez
- Peter Wang
- Polad Shikhaliev
- Raymond Borges Hink
- Robert E Norris Jr
- Rob Root
- Samudra Dasgupta
- Santanu Roy
- Srikanth Yoginath
- Sumit Gupta
- Theodore Visscher
- T Oesch
- Uvinduni Premadasa
- Varisara Tansakul
- Vera Bocharova
- Vladislav N Sedov
- Yacouba Diawara
- Yarom Polsky

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

ORNL has developed a large area thermal neutron detector based on 6LiF/ZnS(Ag) scintillator coupled with wavelength shifting fibers. The detector uses resistive charge divider-based position encoding.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.